
Application of Epistemic Logic
Methods to Fault-Tolerance and

Program Recovery

Alexander Pokluda

CS745 Computer Aided Verification Research Project

University of Waterloo

apokluda@uwaterloo.ca

December 17, 2012

mailto:apokluda@uwaterloo.ca

Abstract

The most important application of formal methods is automated program verification.
However, if an error is identified when a program is verified against its specification, a
cycle of manual revision and verification must be performed. In some situations, the correct
revision of a program (that is, all existing properties of the input program are preserved) is
critical. The automated synthesis of fault-tolerant program from a fault-intolerant one is
particularly well suited for this case. This report first introduces the reader to epistemic
logic and uses the Muddy Children Puzzle, also known as the Cheating Husbands
Problem, Unfaithful Wives Problem or Josephine’s Problem, to reinforce epistemic
logic concepts and then discusses how temporal epistemic modal logic can be applied to
the verification of fault-tolerance and recovery properties. Throughout the report, the
Byzantine Generals Problem, a classic fault-tolerance example from the literature is
discussed. The report concludes with a discussion of related and future work.

CS745 Computer Aided Verification Research Project

Table of Contents

List of Figures ii

1 Introduction and Motivation 1

2 An Introduction to Epistemic Logic 2
2.1 A Model for Epistemic Logic: Possible Worlds Framework 3
2.2 Epistemic Modal Logic . 4
2.3 The Muddy Children Puzzle . 5

3 Problem Description 10

4 Method 11

5 A Representation for Distributed Programs and
Specifications 12

6 The Byzantine Generals Problem 12

7 Byzantine General Problem Implementation 13
7.1 Addition of Masking Fault Tolerance 14
7.2 A Model of the Byzantine Generals Problem 15

8 Results 19
8.1 Fault-Intolerant version of BA Without Faults 20
8.2 Fault-Intolerant version of BA With Faults 21
8.3 Fault-Tolerant version of BA Without Faults 22
8.4 Fault-Tolerant version of BA With Faults 23

9 Related Work 25

10 Conclusion and Future Work 26

i

CS745 Computer Aided Verification Research Project

List of Figures

1 A simple Kripke structure . 3
2 Base Case: 1 Muddy Child . 5
3 The first round of the base case with one muddy child. 7
4 The first round of the inductive case with two muddy children. . . 8
5 The second round of the inductive case with two muddy children. 9

ii

CS745 Computer Aided Verification Research Project

1 Introduction and Motivation

Automated program verification–the act of proving or disproving the cor-
rectness of a program relative to a specification–is arguably the most
important contributions of the field of formal method to date. However,

verification is an after-the-fact task. A program that has been manually constructed
can only be verified against its specification once the implementation is thought
to be complete. (If the implementation is known to be incomplete, it will naturally
fail the verification step). If the program fails to satisfy its specification during
verification, then it must be manually revised and re-verified. This situation
naturally leads to a cycle of manual construction/revision and verification. This
cycle can be quite costly both in terms of human and computational power.

In addition to human error during program construction, other factors may
also require that a program go through a cycle of revision and verification. For
example, it is often the case that the specification for a program will change before
or after construction of the program is complete. Or, a change in the environment
in which the program operates could require that a program be revised and re-
verified. Industrial control software could be deployed in a different environment
that gives different sensor values in different ranges for instance.

Clearly a better solution than manual program revision and verification would
be one in which the revision step is automated together with the verification step.
In this scenario, the revision process would output a new program based on the
input program that preserves all the existing properties of the input program and
a set of new properties that ensure the specification is never violated. In fact, the
output of the revision step would not need to be verified because it would be
correct by construction.

Taking this idea to the extreme leads to program synthesis from specification,
where a program is constructed from scratch based on a specification. Program
revision, on the other hand, transforms an input program into an output pro-
gram that is guaranteed to satisfy its specification. The automated synthesis of
distributed fault-tolerant programs from intolerant ones is discussed in depth
in [2]. In particular, the authors present a symbolic algorithm that adds masking
fault-tolerance to distributed programs and introduce the tool Sycraft that is able
to generate synthesized programs that provide masking fault-tolerance. Intuitively,
a program provides masking fault-tolerance if it is able to recover from a finite
number of faults and continue to run correctly, meeting its specification.

The original goal of this project was to reduce the complexity of creating a
masking fault-tolerant program from a fault intolerant one by applying epistemic
modal logic, also known as the logic of knowledge, to the synthesis process. While
this goal has not been fully met yet (the full realization of this goal is left as future

1

CS745 Computer Aided Verification Research Project

work), this report presents important backrgound information and demonstrates
how properties of a program can be verified agaist specifications defined using
epistemic modal logic formulae.

Section 2 introduces the reader to epistemic logic, which is a form of logic that
allows agents to reason about the world around them. Sections 3, 4 and discuss
how epistemic logic may be applied to the verification of program specifications.
Section 5 provides a brief overview of distributed programs and specifications as
presented in [2]. The symbolic synthesis algorithm presented is also discussed
briefly. The Byzantine Generals Problem, as it was originally presented in [6], is
used throughout this report and discussed in Section 6. An implementation of the
Byzantine Generals Problem using masking fault-tolerance is then discussed in
Section 7. Section 8 discusses the results of using epistemic modal logic to verify
the fault-tolerance and recovery properties of the Byzantine Generals Problem.
Section 9 discusses related work and finally section 10 concludes with a brief
summary and a discussion of future work.

2 An Introduction to Epistemic Logic

Epistemology, the study of knowledge sometimes referred to as the theory of
knowledge has a long history dating back to Ancient Greece. It is a branch of
philosophy that is concerned with the nature and limitations of knowledge.

Epistemic logic is a relatively modern field of study that emerged in the 1950’s and
flourished through the 1960’s in the philosophy community [3].

Researchers in scientific fields have recently become interested in the subject
as well. The scientists are interested in practical and concrete applications of
reasoning about knowledge, but many of the issues that concerted the philoso-
phers concern the scientists also. Epistemic logic has been applied successfully in
many areas of theoretical computer science. A distributed system consisting of
processes communicating over a computer network can be modelled in epistemic
logic using the general model of a multi-agent system. This is one of its major
areas of application; however, to this author’s knowledge, little work has been
done in applying epistemic logic the verification of fault-tolerance and recovery
properties, which will be discussed in following sections. First, however, we will
discuss a model for epistemic logic and epistemic modal logic formulae and apply
these concepts to an example problem known as the Muddy Children Puzzle.

2

CS745 Computer Aided Verification Research Project

1 2
1,2

1,2

1,2

t

s
u¬p

p

p

Figure 1: A simple Kripke structure

2.1 A Model for Epistemic Logic: Possible Worlds Framework

Epistemic logic is often modelled in a possible worlds framework. In this framework,
an agent may not be able to tell which of a number of possible worlds describes
the actual state of affairs given her current information. For example, suppose
Alice is standing on a street in Waterloo, Ontario, and she observes that it is a
beautiful and sunny day. From Alice’s perspective at that moment, it is a sunny
day in Waterloo in all the worlds that she considers possible. An agent is said to
know a fact ϕ if ϕ is true in all world that she considers possible. Thus we can say
that Alice knows that it is sunny in Waterloo.

On the other hand, however, when Alice is standing on the street in Waterloo
she has no information about the current weather in Vancouver, British Columbia.
From her perspective at that moment, she considers a world possible in which it is
sunny in Waterloo and raining in Vancouver and another world possible in which
it is sunny in both Waterloo and Vancouver. Since it is not sunny in Vancouver in
all the worlds that Alice considers possible, we say that Alice does not know that it
is sunny in Vancouver.

We can represent the notion of possible worlds graphically using Kripke struc-
tures. A simple Kripke structure that could correspond to the example just
discussed is shown in Figure 1. The statement “It is sunny in Vancouver” is
represented by the proposition letter p, Alice is represented by agent 1 and three
possible worlds are represented by the states s, t and u. Let agent 2 represent
Alice’s cousin Bob, who conveniently happens to be standing on a street in Van-
couver at the same instant. From the figure we can see that if Alice is in state
s, she considers two worlds possible: one in which p is true (that is, it is sunny
in Vancouver) and another one in which ¬p is true (that is, it is not sunny in
Vancouver) because she cannot distinguist the state s from u. However, Alice
knows that Bob knows the true situation because in both the worlds that Alice
considers possible, Bob knows whether p or ¬p is true.

By contrast, in state s Bob knows that it is sunny in Vancouver but he does
not know that Alice does not know this. In state s, Bob also considers the world
described by state u possible, but in both cases p is true, therefore he knows that p

3

CS745 Computer Aided Verification Research Project

is true. He does not know that Alice does not know this fact, because in state s,
Alice also considers the word described by state t possible (even though Bob does
not), in which ¬p is true.

2.2 Epistemic Modal Logic

Suppose that agents 1, ..., n wish to reason about a non-empty set Φ of propositions
p, q, To express knowledge we use the modal operators K1, ..., Kn. The expression
K1p is read as “Agent 1 knows p.”

We can construct formulae using the primitive propositions from Φ, the logical
operators ¬ and ∧, and the modal operators K1, ..., Kn. In addition, we use the
standard abbreviations1 from propositional logic: conjunction ϕ ∨ φ, implication
ϕ ⇒ φ, and bi-conditional ϕ ⇔ φ. We also use true as an abbreviation of some
fixed propositional tautology such as p ∨ ¬p, and f alse to be an abbreviation of
¬true. We use the abbreviation Ep to denote K1p ∧ ...∧ Kn p. That is, Ep denotes
“Everyone knows p.”

Using this language, we can express complicated statements in a straight
forward way. For example, the formula

K1K2p ∧ ¬K2K1K2p

says that “Agent 1 knows that agent 2 knows p, and agent 2 does not know that
agent 1 knows that agent 2 knows p.”

Two more important concepts from epistemic modal logic are common and
distributed knowledge. Common knowledge of a proposition p holds when
everyone knows p, everyone knows that everyone knows p, everyone knows that
everyone knows that everyone knows p and so on. Intuitively, p is common
knowledge among the agents 1, ..., n if each knows that p holds and is confident
that all that other agents in the system know that p holds. For example, in our
society, it is common knowledge that a red traffic signal means stop and a green
traffic signal means go.

Distributed knowledge means that together a number of agents could pool
their individual information to deduce that a fact q holds. For example, suppose
that Alice knows that Charlie had either oatmeal or toast for breakfast and Bob
knows that Charlie did not have oatmeal for breakfast. Together, Alice and Bob
have distributed knowledge that Charlie had toast for breakfast.

1We refer to these logical operators as abbreviations because the set {¬,∧} forms a functionally
complete set from which all other logical operators can be defined.

4

CS745 Computer Aided Verification Research Project

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

Figure 2: Base Case: 1 Muddy Child

2.3 The Muddy Children Puzzle

We now reinforce the concepts of epistemic logic discussed so far with a puzzle
known as the Muddy Children Puzzle. A number of children (two or more) have
been outside playing and while they were playing one or more of them got mud
on their foreheads. When the children come inside, the father makes each child
figure out whether or not they have mud on their forehead. (Presumably if the
children can do this correctly, they will all get candy or some other reward). When
they come inside, each child can see each other’s forehead, but cannot tell whether
he or she has mud on his or her own forehead. The father states “At least one of
you have mud on your forehead” and then asks “Do any of you know if you have
mud on your forehead?” The father asks this question repeatedly until all children
with muddy foreheads answer “Yes, I have mud on my forehead.” Assuming that
all the children are intelligent, perceptive and truthful, how do they manage to
figure this out?

Let us consider first the case that one child got mud on his forehead when
playing outside. This case is depicted graphically in Figure 2–there are six children
in total and child c5 has a muddy forehead. Figure 3 shows what happens after
the father asks his question. In part 3a we see that child c1 can see that one other
child has mud on his forehead, therefore he does not know whether or not he
has mud on his own forehead. In part 3b we see that the situation is the same for
child c3. The situation is also the same for children c2, c4 and c6; however this is
not depicted in the figure. In part 3c, we see that child c5 cannot see another child
with a muddy forehead and therefore concludes that his own forehead must be
muddy. At the end of the first round, child c5 answers “Yes, I have mud on my
forehead.” This is depicted in part 3d. In this case it is easy to see that child c5
saw no other child with a muddy forehead, and therefore concludes that is own

5

CS745 Computer Aided Verification Research Project

forehead must be muddy.
Now consider the case in which there are two children with muddy foreheads

after playing outside. When they come inside, the father states “At least one of
you have mud on your foreheads” and then asks “Do any of you know if you have
mud on your forehead?” The situation after the father asks this question for the
first time is shown in Figure 4. In parts 4a-4c we see that all the children can see
at least one other child with a muddy forehead. Therefore, they cannot conclude
anything about their own. From this point forward, we will call it a “round” each
time that the father asks the question, the children each reason about their own
forehead using the information that they have gathered and answer the father’s
question. At the end of the first round, none of the children know whether or not
their own forehead is muddy. This is shown in Figure 4d. Although the none of
the children know whether or not their own forehead is muddy yet, they do gain
some important information that will become clear shortly.

During the first round, child c3 considered two worlds possible: one in which
c5 was the only child with a muddy forehead and one in which c5 and herself
were the only ones with muddy foreheads. However, at the end of the first round,
when none of the children knew whether or not they had mud on their foreheads,
and in particular when c5 did not answer “Yes,” c3 learned that c5 must have seen
another child with a muddy forehead. According to c3’s knowledge, the only
possible world in which c5 could have seen another child with a muddy forehead
is the world in which she has mud on her own forehead. Child c5 reasons in the
same manner.

The second round is depicted in Figure 5. Although the children do not see
anything different in parts 5a-5c, they gained knowledge in the first round that can
help them to reason about whether or not they have mud on their own foreheads.
At the end of the second round, children c3 and c5 conclude that they have mud
on their own foreheads and answer “Yes” to their father’s question.

There is an important subtlety at play that we cannot overlook: The fact that the
father openly stated that at least one of the children have mud on their foreheads
makes this fact common knowledge. Had the father not made this statement
openly and publicly, the reasoning presented above does not work. For example,
if the father took each one of the children aside and told him or her that at least
one child has mud on his or her forehead, each child would not know that all
the others know this, would not know that all the others know that all the others
know, and so on.

The Muddy Children Puzzle is also known as the Cheating Husbands Problem,
Unfaithful Wives Problem or Josephine’s Problem. In each of these other variations, the
description of the problem is different, but the solution is the same. For example,
in Josephine’s Problem, every woman in Josephine’s kingdom knows about the

6

CS745 Computer Aided Verification Research Project

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

(a) Child c1 can see a child with a
muddy forehead, therefore he does
not know if his own forehead is
muddy.

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

(b) Child c3 can also see a child with a
muddy forehead, therefore she does
not know if her own forehead is
muddy.

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

(c) Child c5 cannot see another child
with a muddy forehead, therefore
he knows that his own forehead is
muddy.

?

??

?

? ?

c1 c2

c3

c4c5

c6

, ,

,

,/

,

(d) At the end of the first round, child
c5 answers “yes, I have a muddy
forehead” and then the other chil-
dren know that their foreheads are
clean.

Figure 3: The first round of the base case with one muddy child.

7

CS745 Computer Aided Verification Research Project

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

?

(a) Child c1 can see two children with
muddy foreheads, therefore he does
not know if his own forehead is
muddy.

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

?

(b) Child c3 can also see a child with a
muddy forehead, therefore she does
not know if her own forehead is
muddy.

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

?

(c) Child c5 can also see a child with a
muddy forehead, therefore he does
not know if his own forehead is
muddy.

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

?

(d) All children can see at least one
other child with a muddy forehead,
therefore none of them know if their
own forehead is muddy at the end
of the first round.

Figure 4: The first round of the inductive case with two muddy children.

8

CS745 Computer Aided Verification Research Project

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

?

(a) Child c1 can see two children with
muddy foreheads, therefore he does
not know if his own forehead is
muddy.

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

?

(b) In the first round, child c3 consid-
ered it possible that child c5 saw
no other child with a muddy fore-
head. When c5 did not answer
“yes” at the end of the first round,
c3 discovered that this was not the
case. Therefore, she reasons that
there must be at least one other child
with a muddy forehead, and since
she cannot see another child with
a muddy forehead, she reasons that
her own forehead must be muddy.

?

??

?

? ?

c1 c2

c3

c4c5

c6

?

?

(c) Child c5 follows the same reasoning
as c3, and concludes that his fore-
head is muddy also.

?

??

?

? ?

c1 c2

c3

c4c5

c6

, ,

/

,/

,

(d) At the end of the second round, chil-
dren c3 and c5 simultaneously an-
swer, “yes, I have a muddy forehead”
and then the other children know
that their foreheads are clean.

Figure 5: The second round of the inductive case with two muddy children.

9

CS745 Computer Aided Verification Research Project

fidelity of every woman’s husband except her own. Queen Josephine states that
there is at least one unfaithful husband in the kingdom and every woman is
required to shoot her husband at midnight following the day she discovers that
he is unfaithful.

This and the previous sections demonstrated the syntax and semantics of epis-
temic modal logic. In the sections that follow we discuss a model for distributed
computer programs and how temporal epistemic modal logic can be applied to
the verification of fault tolerance and recovery properties.

3 Problem Description

In imperative programming languages a process or thread take actions based
on the results of tests applied to the program’s local state. We call these types
of programs standard programs. Standard programs, however, cannot easily

express the relationship between knowledge and action that we would often like
to capture.

For example, let us consider the Muddy Children Problem again. The children
are asked by their father if they know whether or not they have mud on their
forehead and if a child knows that he has mud on his forehead then he should
answer “yes;” otherwise he should answer “no.” If we let the proposition pi
represent “child i has mud on his or her forehead” then we can think of each
child as the following program from [3]:

case of
if childheardi ∧ (Ki pi ∨ Ki¬pi) do say “Yes”
if childheardi ∧ ¬Ki pi ∧ ¬Ki¬pi do say “No”

end case

In addition to expressing the relationship between knowledge and action,
epistemic modal logic can express certain problems in computer science more
succinctly than standard approaches. This is a new an exciting area of computer
science and is getting a lot of attention in the research community. The goal
of this project is to apply concepts from epistemic logic to the verification of
fault-tolerance and recovery properties for a fault-tolerant program that has been
synthesized from a fault-intolerant one. The application of epistemic modal logic
to the process of synthesizing a fault-tolerant program is discussed as future work.

10

CS745 Computer Aided Verification Research Project

Operator Description

F f eventually f
G f always f
f U g f until g
f R g f release g
X f f in the next state

Table 1: Temporal operators available for use in MCK epistemic logic specifications

4 Method

The goal of verifying fault-tolerance and recovery properties of a synthe-
sized fault-tolerant program has been achieved by modelling a synthesized
fault-tolerant program based on the Byzantine Generals Problem in the

model checker MCK. MCK is a prototype model checker for temporal epistemic
specifications [14]. That is, the specification language in MCK combines epistemic
modal logic with linear temporal logic. Table 1 shows the temporal operators
that are available for use in MCK specifications. Programs are defined as a set
of protocols operating in a common environment. Each running instance of a
protocol represents an agent in the system.

In MCK, agents make observations about the state of the environment. They
may use their observations in a variety of ways to determine what they know.
One way that corresponds to the observational interpretation of knowledge, is
to make inferences about the state based on their last observation. Another way
that corresponds to the clock interpretation of knowledge is to make inferences
about the state based on their last observation and the current clock value. Yet
a third way that corresponds to the perfect recall interpretation of knowledge
is to make inferences based on their last observation and clock value and all
previous observations with clock value. When we use temporal epistemic logic
specifications in section 8 to verify fault-tolerance and recovery properties, we use
the observational interpretation of knowledge.

Section 5 describes a model for distributed programs and the synthesis problem
in detail. Section 6 discusses the abstract Byzantine Generals Problem and section 7
presents a solution to the Byzantine Generals Problem using the framework from
section 5 and a model of the solution in MCK. Section 8 presents the results of
verifying three properties that prove the correctness of the synthesized Byzantine
Generals Problem solution.

11

CS745 Computer Aided Verification Research Project

5 A Representation for Distributed Programs and
Specifications

Formally we model a distributed program P as a set of processes ΠP . Each
process is defined by a transitions system and constrained by read/write
restrictions over its set of variables V = {v0, v1, ..., vn}. A specification SPEC

is a set of infinite computations that specify the correct behaviour of the system.
The specification SPEC can also be represented as an invariant I that is a set of
valid states.

The problem of synthesizing a fault-tolerant program from a fault-intolerant
one is as follows: Given a fault-intolerant program P = 〈ΠP , IP 〉, a set F of faults
and a specification SPEC, synthesize a program P ′ such that P ′ is F-tolerant to
SPEC from IP ′ . The synthesis method used must obtain P ′ from P by adding
fault-tolerance to P without introducing new behaviours in the absence of faults.

We now briefly summarize the algorithm for synthesizing a masking fault-
tolerant program P ′ from a fault-intolerant one P presented in [2]. The input
to the program is a fault-intolerant program, a safety specification (a set of bad
transitions/computations that should not happen), and a set of fault transitions.
The output of the algorithm is a fault-tolerant program.

The first step is initialization. State and transition predicates from where
the executions of fault transitions may cause the execution to violate the safety
specification are identified. A fault-span is computed in the second step that is
the set of all reachable states of the program in the presence of faults. The third
step eliminates transitions that lead to the violation of the safety specification.
The fourth step resolves deadlock states to ensure that the liveness properties of
the program are satisfied and the fifth step recomputes the program invariant so
that it is closed in the final output program. Steps 2-3, 2-4 and 2-5 are repeated
until a fixpoint is reached–that is, the algorithm repeats until no more progress is
possible and then terminates.

In the next two sections, we discuss the Byzantine Generals Problem and how
this algorithm can be applied to the problem in order to solve the Byzantine
Generals Problem.

6 The Byzantine Generals Problem

The Byzantine Generals Problem was first published by Lamport, Shostak
and Pease in 1982 [6]. Since then, the abstract problem and variations of it
have become a standard example used throughout the literature. Reliable

computer systems must be able to handle a variety of errors from malfunctioning

12

CS745 Computer Aided Verification Research Project

parts of the system, including the case in which a failing component sends
conflicting information to different parts of the system. This is described abstractly
by the Byzantine Generals Problem. The following is a summary of the problem
as it was originally proposed.

Imagine several divisions of the Byzantine army camped around an enemy
city. Each division of the army is commanded by a general. The generals may
each have some information gathered by observing the enemy that helps them
predict whether an attack would be successful or not, and together they must
reach an agreement whether to attack or retreat. The generals may communicate
only by messenger–there is no broadcast facility. Furthermore, one or more of
the generals might be traitors and try to confuse the others. The problem is to
develop an algorithm that ensures that the loyal generals all agree to either attack
or retreat. Specifically, the algorithm must meet the following two conditions:

A All loyal generals decide on the same plan of action

The algorithm must guarantee that the loyal generals decide on the same plan of
action, while the traitors may do whatever they wish. The loyal generals must
agree on a reasonable action despite what the traitors do. This requirement
motivates the second condition.

B A small number of traitors cannot cause the loyal generals to adopt a bad plan

Each general sends his decision to each of the other generals. The first condition
can be satisfied by having each of the generals combine the decision that he
received from the others in a uniform way. The second condition is hard to
formalize, but we can think of it like this: if the majority of the loyal generals
decide to attack, a small number of traitors cannot cause them to decide to retreat.
In order to satisfy this condition, the method that the generals use to come to a
decision must be robust. For example, if the generals use a majority vote to decide
then a small number of traitors cannot affect the decision unless the vote among
the loyal generals is nearly evenly split. The problem with this solution, however,
is that a traitorous general may not send the same d(i) value to each of the n− 1
generals.

Various formulations of the problem and solutions exist. In the next section
we look at the variation presented in [2].

7 Byzantine General Problem Implementation

In the version of the Byzantine Generals Problem presented in [2] there is a
commanding general g and three lieutenant generals j, k and l represented as

13

CS745 Computer Aided Verification Research Project

processes where at most one of the processes can be byzantine (faulty). If the
commanding general is not byzantine, then the non-byzantine lieutenant generals
must follow the commander’s decision otherwise the lieutenant general processes
must reach an agreement on their own.

The commanding general only provides a decision while the lieutenant gen-
erals receive a decision from the commanding general and the other lieutenant
generals. The commanding general is represented by a decision variable d that
can have a value of either 0 or 1. The lieutenant generals are represented by
a decision variable that can have a value of either 0, 1 or ⊥, where ⊥ means
that the lieutenant has not yet received a decision value from the commander.
Each lieutenant general process also maintains a Boolean variable f that indicates
whether or not that process has finalized its decision. A process is free to change
its decision until it is finalized. Additionally, a Boolean variable b for each process
indicates whether or not that process is byzantine.

The fault-intolerant version of byzantine agreement from [2] works as follows.
Each lieutenant process copies the commanding general’s decision and then
finalizes (outputs) that decision. The transitions that a lieutenant general process,
say j, can take are specified by the following actions:

BA1j :: (dj = ⊥) ∧ (f .j = f alse)→ d.j := d.g;

BA2j :: (dj 6= ⊥) ∧ (f .j = f alse)→ f .j := true;

7.1 Addition of Masking Fault Tolerance

In [2] the authors present a tool Sycraft that is able to synthesize fault-tolerant
programs from fault-intolerant ones using the algorithm discussed in section 5.
The following shows the output of Sycraft when run on the Byzantine Generals
Problem program BA from the previous section:

14

CS745 Computer Aided Verification Research Project

BA′1j :: d.j = ⊥∧ f .j := f alse

→ d.j := d.g;
BA′2j :: d.j 6= ⊥∧ f .j = f alse ∧ (d.k = ⊥∨ d.k = d.j)∧

(d.l = ⊥∨ d.l = d.j) ∧ (d.k 6= ⊥∨ d.l 6= ⊥)
→ f .j := true;

BA′3j :: d.j = 1∧ d.k = 0∧ d.l = 0∧ f .j = f alse

→ d.j, f .j := 0, f alse|true;
BA′4j :: d.j = 0∧ d.k = 1∧ d.l = 1∧ f .j = f alse

→ d.j, f .j := 1, f alse|true;
BA′5j :: d.j 6= ⊥∧ f .j = f alse ∧ ((d.j = d.k ∧ d.j 6= d.l)∨

(d.j = d.l ∧ d.j 6= d.k))
→ f .j := true;

In the output program, the action BA′1 is unchanged, while the actions BA′3
and BA′4 are recovery actions and the actions BA′2 and BA′5 are strengthened
actions. This version of the program is able to recover from or mask byzantine
faults in which a faulty process may change its decision arbitrarily. (This is like
a traitorous general sending different values for its decision to the the other
generals).

The next sections present a model of the program BA′ and then verify its fault
tolerance and recovery properties using temporal epistemic modal logic.

7.2 A Model of the Byzantine Generals Problem

Listing 1 shows a model of the Byzantine Generals Problem. This model is based
on the fault-intolerant and synthesized fault-tolerant versions of the program in
[2]. In the model, any single process may start byzantine or may become byzantine
during a future round. A “fault counter” is used to restrict the number of faults
that may occur to a finite number. (If an infinite number of faults occur, program
recovery is not possible). The current decision for each process is maintained by
a variable dp for p ∈ g, j, k, l. The decision variable can have any of the values
Undec, Zero, or One corresponding to the values ⊥, 0, 1 respectively.

The actions that a lieutenant general process can take in the fault-intolerant
program presented in section 7 are defined on lines 119-124. (These actions have
been commented out in listing 1). Lines 126-143 define the actions taken by the
lieutenant general processes in the fault-tolerant version.

15

CS745 Computer Aided Verification Research Project

Lines 62-73 contain the invariant for the synthesized fault-tolerant program
from [2]. Lines 78-81, 85-91 and 95-98 are specifications that verify that the final
decisions of the commanding general and lieutenant generals meet the require-
ments from section 7. Specifically, if the commanding general is not byzantine
then the non-byzantine lieutenant generals must follow the commander’s decision,
otherwise the lieutenant general processes must reach an agreement on their own.
The temporal epistemic specification starting on line 78 verifies that if a lieutenant
general process knows that it is not byzantine and has made its final decision and
the commander is not byzantine, then its decision agrees with the commanding
general’s decision, if the commander is not byzantine. The temporal epistemic
specification starting on line 85 verifies that a lieutenant general process knows
that its decision agrees with a second process if both processes are not byzantine.
Finally, the specification starting on line 95 verifies that the commanding general
process knows that the non-byzantine lieutenants will follow its decision if it is
not byzantine.

1 −− B y z a n t i n e G e n e r a l s Problem
2 −−
3 −− Thi s i s a model t o a s o l u t i o n o f t h e B y z a n t i n e G e n e r a l s Problem .
4 −− The model i s b a s e d on t h e program from [1] t h a t used
5 −− a s y m b o l i c s y n t h e s i s a p p r o a c h t o add f a u l t−t o l e r a n c e t o
6 −− a f a u l t−i n t o l e r a n t program .
7 −−
8 −− [1] Borzoo Bonakdarpour , Sandeep Kulkarn i , and Fuad Abujarad .
9 −− Symbo l i c s y n t h e s i s o f masking f a u l t−t o l e r a n t d i s t r i b u t e d

10 −− programs . D i s t r i b u t e d Computing , 25 :83 âĂŞ108 , 2012 .
11 −− 1 0 . 1 0 0 7 / s00446−011−0139−3.
12
13 type Decis ion = { Undec , Zero , One}
14 type FaultCounter = { 0 . . 3 }
15
16 d_g : Decis ion −− The commanding g e n e r a l ’ s d e c i s i o n
17 d_j : Decis ion −− The l i e u t e n a n t g e n e r a l j ’ s d e c i s i o n
18 d_k : Decis ion −− The l i e u t e n a n t g e n e r a l k ’ s d e c i s i o n
19 d_l : Decis ion −− The l i e u t e n a n t g e n e r a l l ’ s d e c i s i o n
20
21 b_g : Bool −− Whether or not commander i s b y z a n t i n e
22 b _ j : Bool −− Whether or not l i e u t e n a n t j i s b y z a n t i n e
23 b_k : Bool −− Whether or not l i e u t e n a n t k i s b y z a n t i n e
24 b_l : Bool −− Whether or not l i e u t e n a n t l i s b y z a n t i n e
25
26 i n i t i a l i z a t i o n
27 from a l l _ i n i t
28 begin
29 i f True −> d_g := Zero −− The g e n e r a l d e c i d e s e i t h e r Zero or One
30 [] True −> d_g := One −− non−d e t e r m i n i s t i c a l l y

16

CS745 Computer Aided Verification Research Project

31 f i
32 −− FAULTS
33 ; i f True −> b_g := True −− At most one p r o c e s s may be b y z a n t i n e
34 [] True −> b _ j := True
35 [] True −> b_k := True
36 [] True −> b_l := True
37 [] True −> skip
38 f i
39 end
40
41 agent G " general " (d_g , b_g)
42 agent J " non_general " (d_g , d_j , d_k , d_l , b _ j)
43 agent K " non_general " (d_g , d_k , d_l , d_j , b_k)
44 agent L " non_general " (d_g , d_l , d_j , d_k , b_l)
45
46 −− FAULTS
47 t r a n s i t i o n s
48 begin
49 −− F0 : I f no p r o c e s s i s b y z a n t i n e ,
50 −− a t most one a g e n t may become b y z a n t i n e
51 i f (neg b_g) /\ (neg b _ j) /\ (neg b_k) /\ (neg b_l) −>
52 i f True −> b_g := True
53 [] True −> b _ j := True
54 [] True −> b_k := True
55 [] True −> b_l := True
56 [] True −> skip
57 f i
58 f i
59 end
60
61 −− I n v a r i a n t P r e d i c a t e −−
62 s p e c _ o b s _ l t l = G ((
63 neg b_g /\ (neg b _ j \/ neg b_k) /\ (neg b_k \/ neg b_l)
64 /\ (neg b_l \/ neg b _ j) /\
65 (neg b _ j => (d_ j == Undec \/ d_j == d_g)) /\
66 (neg b_k => (d_k == Undec \/ d_k == d_g)) /\
67 (neg b_l => (d_l == Undec \/ d_l == d_g)) /\
68 ((neg b _ j /\ J . f) => (d_ j /= Undec)) /\
69 ((neg b_k /\ K. f) => (d_k /= Undec)) /\
70 ((neg b_l /\ L . f) => (d_l /= Undec)))
71 \/
72 (b_g /\ neg b _ j /\ neg b_k /\ neg b_l /\
73 d_j == d_k /\ d_k == d_l /\ d_j /= Undec))
74
75 −− P1) A l i e u t e n a n t p r o c e s s knows t h a t i f i t i s no t b y z a n t i n e and
76 −− i t has made i t s f i n a l d e c i s i o n and t h e g e n e r a l i s not b y z a n t i n e ,
77 −− th en i t s f i n a l d e c i s i o n a g r e e s wi th t h e commander ’ s d e c i s i o n
78 s p e c _ o b s _ l t l = G

17

CS745 Computer Aided Verification Research Project

79 ((Knows J (neg b _ j /\ J . f /\ neg b_g) => (d_ j == d_g)) /\
80 (Knows K (neg b_k /\ K. f /\ neg b_g) => (d_k == d_g)) /\
81 (Knows L (neg b_l /\ L . f /\ neg b_g) => (d_l == d_g)))
82
83 −− P2) A l i e u t e n a n t g e n e r a l p r o c e s s knows t h a t i t s f i n a l d e c i s i o n
84 −− a g r e e s wi th a s e c o n d p r o c e s s i f b o t h p r o c e s s e s a r e not b y z a n t i n e
85 s p e c _ o b s _ l t l = G
86 ((neg b _ j /\ J . f) => Knows J ((neg b_k /\ K. f)
87 => (d_ j == d_k) /\ (neg b_l /\ L . f) => (d_ j == d_l)) /\
88 (neg b_k /\ K. f) => Knows K ((neg b _ j /\ J . f)
89 => (d_k == d_j) /\ (neg b_l /\ L . f) => (d_k == d_l)) /\
90 (neg b_l /\ L . f) => Knows L ((neg b _ j /\ J . f)
91 => (d_l == d_j) /\ (neg b_k /\ K. f) => (d_l == d_k)))
92
93 −− P3) The commander knows t h a t t h e f i n a l d e c i s i o n o f t h e
94 −− non−b y z a n t i n e l i e u t e n a n t s w i l l a g r e e wi th i t s d e c i s i o n
95 s p e c _ o b s _ l t l = G neg b_g => Knows G
96 (((neg b _ j /\ J . f) => (d_g == d_j)) /\
97 ((neg b_k /\ K. f) => (d_g == d_k)) /\
98 ((neg b_l /\ L . f) => (d_g == d_l)))
99

100 protoco l " general " (d : Decision , b : Bool)
101 c : FaultCounter
102 where c == 3
103 begin
104 −− F1 : A b y z a n t i n e p r o c e s s may change i t s d e c i s i o n a r b i t r a r i l y
105 do b /\ c > 0 −> << d . wri te (Zero) | c := c − 1 >>
106 [] b /\ c > 0 −> << d . wri te (One) | c := c − 1 >>
107 [] neg b −> skip
108 od
109 end
110
111 protoco l " non_general " (d_g : Decision , d_ j : Decision , d_k : Decision ,
112 d_l : Decision , b _ j : Bool)
113 c : FaultCounter
114 f : Bool
115 where c == 3 /\ f == False
116 begin
117 do
118 −− f a u l t i n t o l e r a n t v e r s i o n
119 −− (d _ j == Undec) /\ (neg f) /\ (d_g == Zero)
120 −− −> << d _ j . w r i t e (Zero) >> −− BA1a
121 −− [] (d _ j == Undec) /\ (neg f) /\ (d_g == One)
122 −− −> << d _ j . w r i t e (One) >> −− BA1b
123 −− [] (d _ j /= Undec) /\ (neg f)
124 −− −> f := True −− BA2
125 −− f a u l t t o l e r a n t v e r s i o n
126 (d_ j == Undec) /\ (neg f) /\ (d_g == Zero)

18

CS745 Computer Aided Verification Research Project

127 −> << d_j . wri te (Zero) >> −− BA1a (unchanged)
128 [] (d_ j == Undec) /\ (neg f) /\ (d_g == One)
129 −> << d_j . wri te (One) >> −− BA1b (unchanged)
130 [] (d_ j /= Undec) /\ (neg f) /\ (d_k == Undec \/ d_k == d_j) /\
131 (d_l == Undec \/ d_l == d_j) /\(d_k /= Undec \/ d_l /= Undec)
132 −> f := True
133 [] (d_ j == One) /\ (d_k == Zero) /\ (d_l == Zero) /\ (neg f)
134 −> << d_j . wri te (Zero) >>
135 [] (d_ j == One) /\ (d_k == Zero) /\ (d_l == Zero) /\ (neg f)
136 −> << d_j . wri te (Zero) | f := True >>
137 [] (d_ j == Zero) /\ (d_k == One) /\ (d_l == One) /\ (neg f)
138 −> << d_j . wri te (One) >>
139 [] (d_ j == Zero) /\ (d_k == One) /\ (d_l == One) /\ (neg f)
140 −> << d_j . wri te (One) | f := True >>
141 [] (d_ j /= Undec) /\ (neg f) /\ ((d_ j == d_k /\ d_j /= d_l) \/
142 (d_ j == d_l /\ d_j /= d_k))
143 −> f := True
144
145 −− F1 : A b y z a n t i n e p r o c e s s may change i t s d e c i s i o n a r b i t r a r i l y
146 [] b _ j /\ c > 0
147 −> << d_j . wri te (Zero) | c := c − 1 >>
148 [] b _ j /\ c > 0
149 −> << d_j . wri te (One) | c := c − 1 >>
150 od
151 end

Listing 1: The Byzantine Generals Problem modelled in MCK

8 Results

The MCK model of the Byzantine Generals Problem in Listing 1 contains the
actions performed by both the fault intolerant version of the Byzantine Gener-
als Problem BA and fault tolerant version BA′ on lines 119-124 and 126-143
respectively. Faults are introduced on lines 33-38 in the initialization block and
lines 47-59 in the transition block. Lines 33-38 in the initialization block enable
up to one process to start in a byzantine state. Lines 47-59 allow a process to
become byzantine if no process is byzantine already at the end of each round.
Once a process becomes byzantine, it will remain byzantine; however, a fault
counter is used on lines 105 and 106 to ensure that if the commanding general
becomes byzantine then only a finite number of faults can occur and similarly the
fault counter on lines 147 and 149 ensures that if a lieutenant general becomes
byzantine then only a finite number of faults can occur.

In this section, we use MCK to test whether or not the program invariant from
[2] holds, as well as the three properties verifying the correctness of the solution to

19

CS745 Computer Aided Verification Research Project

the Byzantine Generals Problem from section 7.2 defined using temporal epistemic
modal logic.

8.1 Fault-Intolerant version of BA Without Faults

The following shows the output from MCK when the model checker with added
line breaks when it is run against the fault-intolerant version of BA without any
faults occurring. To verify the model with using the fault-intolerant version of BA
in the absence of faults, lines 33-38, 47-59, 126-143 and 146-149 are commented
out and lines 119-124 are uncommented.

apokluda@scslt077:~/Documents/CS745/Project/mck$ mck byzantine.mck

MCK, version 1.0.0, January, 2012.

(C)opyright [2002..2012] University of New South Wales.

spec_obs_ltl =

G (((((((((((neg b_g) /\ ((neg b_j) \/ (neg b_k))) /\ ((neg b_k) \/

(neg b_l))) /\ ((neg b_l) \/ (neg b_j))) /\ ((neg b_j) =>

((d_j == Undec) \/ (d_j == d_g)))) /\ ((neg b_k) => ((d_k == Undec) \/

(d_k == d_g)))) /\ ((neg b_l) => ((d_l == Undec) \/ (d_l == d_g)))) /\

(((neg b_j) /\ J.f) => (neg (d_j == Undec)))) /\ (((neg b_k) /\ K.f) =>

(neg (d_k == Undec)))) /\ (((neg b_l) /\ L.f) => (neg (d_l == Undec))))

\/ ((((((b_g /\ (neg b_j)) /\ (neg b_k)) /\ (neg b_l)) /\ (d_j == d_k))

/\ (d_k == d_l)) /\ (neg (d_j == Undec))))

>> Spec holds.

spec_obs_ltl =

G ((((Knows J (((neg b_j) /\ J.f) /\ (neg b_g))) => (d_j == d_g)) /\

((Knows K (((neg b_k) /\ K.f) /\ (neg b_g))) => (d_k == d_g))) /\

((Knows L (((neg b_l) /\ L.f) /\ (neg b_g))) => (d_l == d_g)))

>> Spec holds.

spec_obs_ltl =

G (((((neg b_j) /\ J.f) => ((Knows J ((((neg b_k) /\ K.f) =>

((d_j == d_k) /\ ((neg b_l) /\ L.f))) => (d_j == d_l))) /\ ((neg b_k)

/\ K.f))) => ((Knows K ((((neg b_j) /\ J.f) => ((d_k == d_j) /\

((neg b_l) /\ L.f))) => (d_k == d_l))) /\ ((neg b_l) /\ L.f))) =>

(Knows L ((((neg b_j) /\ J.f) => ((d_l == d_j) /\ ((neg b_k) /\ K.f)))

20

CS745 Computer Aided Verification Research Project

=> (d_l == d_k))))

>> Spec holds.

spec_obs_ltl =

(G (neg b_g)) => (Knows G (((((neg b_j) /\ J.f) => (d_g == d_j)) /\

(((neg b_k) /\ K.f) => (d_g == d_k))) /\ (((neg b_l) /\ L.f) =>

(d_g == d_l))))

>> Spec holds.

As can be seen from the output, the program invariant and the temporal
epistemic modal logic properties P1 - P3 hold for the fault-intolerant version of
BA in the absense of faults.

8.2 Fault-Intolerant version of BA With Faults

The following shows the output from MCK when the model checker is run against
the fault-intolerant version of BA in the presence of faults. To enable faults, lines
33-38 and 47-58 are uncommented.

apokluda@scslt077:~/Documents/CS745/Project/mck$ mck byzantine.mck

MCK, version 1.0.0, January, 2012.

(C)opyright [2002..2012] University of New South Wales.

spec_obs_ltl =

G (((((((((((neg b_g) /\ ((neg b_j) \/ (neg b_k))) /\ ((neg b_k) \/

(neg b_l))) /\ ((neg b_l) \/ (neg b_j))) /\ ((neg b_j) =>

((d_j == Undec) \/ (d_j == d_g)))) /\ ((neg b_k) => ((d_k == Undec) \/

(d_k == d_g)))) /\ ((neg b_l) => ((d_l == Undec) \/ (d_l == d_g)))) /\

(((neg b_j) /\ J.f) => (neg (d_j == Undec)))) /\ (((neg b_k) /\ K.f) =>

(neg (d_k == Undec)))) /\ (((neg b_l) /\ L.f) => (neg (d_l == Undec))))

\/ ((((((b_g /\ (neg b_j)) /\ (neg b_k)) /\ (neg b_l)) /\

(d_j == d_k)) /\ (d_k == d_l)) /\ (neg (d_j == Undec))))

>> Spec fails.

spec_obs_ltl =

G ((((Knows J (((neg b_j) /\ J.f) /\ (neg b_g))) => (d_j == d_g)) /\

((Knows K (((neg b_k) /\ K.f) /\ (neg b_g))) => (d_k == d_g))) /\

((Knows L (((neg b_l) /\ L.f) /\ (neg b_g))) => (d_l == d_g)))

>> Spec holds.

21

CS745 Computer Aided Verification Research Project

spec_obs_ltl =

G (((((neg b_j) /\ J.f) => ((Knows J ((((neg b_k) /\ K.f) =>

((d_j == d_k) /\ ((neg b_l) /\ L.f))) => (d_j == d_l))) /\ ((neg b_k)

/\ K.f))) => ((Knows K ((((neg b_j) /\ J.f) => ((d_k == d_j) /\

((neg b_l) /\ L.f))) => (d_k == d_l))) /\ ((neg b_l) /\ L.f))) =>

(Knows L ((((neg b_j) /\ J.f) => ((d_l == d_j) /\ ((neg b_k) /\ K.f)))

=> (d_l == d_k))))

>> Spec fails.

spec_obs_ltl =

(G (neg b_g)) => (Knows G (((((neg b_j) /\ J.f) => (d_g == d_j)) /\

(((neg b_k) /\ K.f) => (d_g == d_k))) /\ (((neg b_l) /\ L.f) =>

(d_g == d_l))))

>> Spec fails.

As we would expect, the program invariant is not satisfied. Interestingly,
property P1 still holds; however, on careful consideration, this makes sense. The
property states that if a lieutenant and commander are not byzantine, then that
lieutenant knows that its final decision agrees with the general. No recovery
actions are needed to make this statement true, therefore it is still satisfied by
the fault-intolerant version of BA in the presence of faults. Properties P2 and P3,
which require agreement between lieutenant processes, are not satisfied.

8.3 Fault-Tolerant version of BA Without Faults

The following shows the output from MCK when the model checker is run against
the fault-tolerant version of BA without any faults occurring. To verify the
model using the fault-tolerant version of BA without faults occurring, lines 32-38,
47-59, 105-108, 119-124 and 146-149 are commented out while lines 126-143 are
uncommented.

apokluda@scslt077:~/Documents/CS745/Project/mck$ mck byzantine.mck

MCK, version 1.0.0, January, 2012.

(C)opyright [2002..2012] University of New South Wales.

spec_obs_ltl =

G (((((((((((neg b_g) /\ ((neg b_j) \/ (neg b_k))) /\ ((neg b_k) \/

(neg b_l))) /\ ((neg b_l) \/ (neg b_j))) /\ ((neg b_j) =>

22

CS745 Computer Aided Verification Research Project

((d_j == Undec) \/ (d_j == d_g)))) /\ ((neg b_k) => ((d_k == Undec) \/

(d_k == d_g)))) /\ ((neg b_l) => ((d_l == Undec) \/ (d_l == d_g)))) /\

(((neg b_j) /\ J.f) => (neg (d_j == Undec)))) /\ (((neg b_k) /\ K.f) =>

(neg (d_k == Undec)))) /\ (((neg b_l) /\ L.f) => (neg (d_l == Undec))))

\/ ((((((b_g /\ (neg b_j)) /\ (neg b_k)) /\ (neg b_l)) /\ (d_j == d_k))

/\ (d_k == d_l)) /\ (neg (d_j == Undec))))

>> Spec holds.

spec_obs_ltl =

G ((((Knows J (((neg b_j) /\ J.f) /\ (neg b_g))) => (d_j == d_g)) /\

((Knows K (((neg b_k) /\ K.f) /\ (neg b_g))) => (d_k == d_g))) /\

((Knows L (((neg b_l) /\ L.f) /\ (neg b_g))) => (d_l == d_g)))

>> Spec holds.

spec_obs_ltl =

G (((((neg b_j) /\ J.f) => ((Knows J ((((neg b_k) /\ K.f) =>

((d_j == d_k) /\ ((neg b_l) /\ L.f))) => (d_j == d_l))) /\ ((neg b_k)

/\ K.f))) => ((Knows K ((((neg b_j) /\ J.f) => ((d_k == d_j) /\

((neg b_l) /\ L.f))) => (d_k == d_l))) /\ ((neg b_l) /\ L.f))) =>

(Knows L ((((neg b_j) /\ J.f) => ((d_l == d_j) /\ ((neg b_k) /\ K.f)))

=> (d_l == d_k))))

>> Spec holds.

spec_obs_ltl =

(G (neg b_g)) => (Knows G (((((neg b_j) /\ J.f) => (d_g == d_j)) /\

(((neg b_k) /\ K.f) => (d_g == d_k))) /\ (((neg b_l) /\ L.f) =>

(d_g == d_l))))

>> Spec holds.

As we would expect, the program invariant and properties P1 - P3 are satisfied.
This demonstrates that the addition of the recovery actions in the fault-tolerant
version of BA does not alter the behaviour of the program in the absence of faults.

8.4 Fault-Tolerant version of BA With Faults

The following shows the output from MCK model checker with added line breaks
when it is run against the fault-tolerant version of BA with any one process

23

CS745 Computer Aided Verification Research Project

becoming byzantine and a finite amount of faults occurring. To verify the model
using the fault-tolerant version of BA in the presence of faults, the model is used
as it is presented in listing 1 except that the definition of the program invariant and
properties P1 - P3 are changes changed slightly: previously these specifications
were defined using the global temporal operator G, specifying that the program
invariant and properties P1 - P3 must always hold but we do not expect the
program invariant and these properties to hold between the time that a fault
occurs and the fault-tolerant version of the program has recovered from the faults,
so we replace the global temporal operator with the finally temporal operator F,
specifying that the program invariant must eventually hold and that properties P1
- P3 must eventually be satisfied. That is, the program invariant and properties P1
- P3 must be satisfied after the program has recovered from any faults.

apokluda@scslt077:~/Documents/CS745/Project/mck$ mck byzantine.mck

MCK, version 1.0.0, January, 2012.

(C)opyright [2002..2012] University of New South Wales.

spec_obs_ltl =

F (((((((((((neg b_g) /\ ((neg b_j) \/ (neg b_k))) /\ ((neg b_k) \/

(neg b_l))) /\ ((neg b_l) \/ (neg b_j))) /\ ((neg b_j) =>

((d_j == Undec) \/ (d_j == d_g)))) /\ ((neg b_k) => ((d_k == Undec) \/

(d_k == d_g)))) /\ ((neg b_l) => ((d_l == Undec) \/ (d_l == d_g)))) /\

(((neg b_j) /\ J.f) => (neg (d_j == Undec)))) /\ (((neg b_k) /\ K.f) =>

(neg (d_k == Undec)))) /\ (((neg b_l) /\ L.f) => (neg (d_l == Undec))))

\/ ((((((b_g /\ (neg b_j)) /\ (neg b_k)) /\ (neg b_l)) /\ (d_j == d_k))

/\ (d_k == d_l)) /\ (neg (d_j == Undec))))

>> Spec holds.

spec_obs_ltl =

F ((((Knows J (((neg b_j) /\ J.f) /\ (neg b_g))) => (d_j == d_g)) /\

((Knows K (((neg b_k) /\ K.f) /\ (neg b_g))) => (d_k == d_g))) /\

((Knows L (((neg b_l) /\ L.f) /\ (neg b_g))) => (d_l == d_g)))

>> Spec holds.

spec_obs_ltl =

F (((((neg b_j) /\ J.f) => ((Knows J ((((neg b_k) /\ K.f) =>

((d_j == d_k) /\ ((neg b_l) /\ L.f))) => (d_j == d_l))) /\ ((neg b_k)

/\ K.f))) => ((Knows K ((((neg b_j) /\ J.f) => ((d_k == d_j) /\

24

CS745 Computer Aided Verification Research Project

((neg b_l) /\ L.f))) => (d_k == d_l))) /\ ((neg b_l) /\ L.f))) =>

(Knows L ((((neg b_j) /\ J.f) => ((d_l == d_j) /\ ((neg b_k) /\ K.f)))

=> (d_l == d_k))))

>> Spec holds.

spec_obs_ltl =

(neg b_g) => (F (Knows G (((((neg b_j) /\ J.f) => (d_g == d_j)) /\

(((neg b_k) /\ K.f) => (d_g == d_k))) /\ (((neg b_l) /\ L.f) =>

(d_g == d_l)))))

>> Spec holds.

As we expect, the fault-tolerant version of BA satisfies the properties P1 - P3,
which verifies that the program can recover from a finite number of faults.

9 Related Work

The modelling and verification of multi-agent systems has received quite a bit
of attention over the last few decades. For example, [3] is a full-length textbook
dedicated to the topic of epistemic logic and knowledge-based programming. The
book [4] is another full-length textbook that devotes a chapter to epistemic logic
but also covers a broad range of other topics relevant to formal verification. Both
of these books abstractly discuss using epistemic modal logic to model multi-agent
systems.

This report used the fault-intolerant and synthesized fault-tolerant implemen-
tation of the Byzantine Generals Problem from [2], with the aim of eventually
improving the authors’ synthesis algorithm with epistemic logic. The authors
of that paper have other published works on program synthesis, including the
related paper [1].

The authors of the MCK model checker have published a number of works
on modelling and verifying multi-agent systems using epistemic modal logic
including [8, 12, 9, 13]. Other researchers have also focused on model checking
knowledge and time, for instance [11].

Work has also been done on the verification of epistemic properties of multi-
agent systems, as was done in this report [10, 15]. A number of publications were
made in the 1970s and 1980s on the use of knowledge in program synthesis from
specification, for example [7, 5]; however, little if any work has been done recently
on using epistemic modal logic in the process of synthesizing a fault-tolerant
program from a fault-intolerant one.

25

CS745 Computer Aided Verification Research Project

10 Conclusion and Future Work

This report first discussed the importance of program synthesis, and in particular
the synthesis of a fault-tolerant program from a fault-intolerant one. Subsequently,
the reader was introduced to epistemic modal logic and the possible worlds model
for knowledge. These concepts were reinforced with the example of the Muddy
Children Puzzle.

The refined goal of this project was to verify the fault-tolerance and recovery
properties of a synthesized fault-tolerant program. This was achieved by mod-
elling a version of the Byzantine General’s Problem in the MCK model checker
and verifying that the synthesized fault-tolerant program met its specification in
the presence of faults, where the specification was formulated using properties
expressed as temporal epistemic modal logic formulae.

As was mentioned in the introduction, the original goal of this research project
was to incorporate epistemic modal logic into the program synthesis algorithm
presented in [2], which is now left to future work. However, this report defined
the problem and educated the reader on related topics which lays the groundwork
for this important future work.

References

[1] Borzoo Bonakdarpour and Sandeep Kulkarni. Revising distributed unity
programs is np-complete. In Theodore Baker, Alain Bui, and Sébastien
Tixeuil, editors, Principles of Distributed Systems, volume 5401 of Lecture
Notes in Computer Science, pages 408–427. Springer Berlin / Heidelberg, 2008.
10.1007/978-3-540-92221-6_26.

[2] Borzoo Bonakdarpour, Sandeep Kulkarni, and Fuad Abujarad. Symbolic syn-
thesis of masking fault-tolerant distributed programs. Distributed Computing,
25:83–108, 2012. 10.1007/s00446-011-0139-3.

[3] Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning
About Knowledge. MIT Press, 2003.

[4] M Huth and M Ryan. Logic in Computer Science: modelling and reasoning about
systems. Cambridge University Press, 2000.

[5] E. Kant and D.R. Barstow. The refinement paradigm: The interaction of
coding and efficiency knowledge in program synthesis. Software Engineering,
IEEE Transactions on, SE-7(5):458 – 471, sept. 1981.

26

CS745 Computer Aided Verification Research Project

[6] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[7] Zohar Manna and Richard Waldinger. Knowledge and reasoning in program
synthesis. Artificial Intelligence, 6(2):175 – 208, 1975.

[8] Ron Van Der Meyden. Knowledge based programs: On the complexity of
perfect recall in finite environments (extended abstract). In Proceedings of the
Sixth Conference on Theoretical Aspects of Rationality and Knowledge, pages 31–50.
Morgan Kaufmann Publishers, 1996.

[9] Ron van der Meyden and Kaile Su. Symbolic model checking the knowledge
of the dining cryptographers. In Proceedings of the 17th IEEE workshop on
Computer Security Foundations, CSFW ’04, pages 280–, Washington, DC, USA,
2004. IEEE Computer Society.

[10] W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent
systems via bounded model checking. In Proceedings of the second international
joint conference on Autonomous agents and multiagent systems, AAMAS ’03,
pages 209–216, New York, NY, USA, 2003. ACM.

[11] Wiebe van der Hoek and Michael Wooldridge. Model checking knowledge
and time. In Dragan BoÅąnacki and Stefan Leue, editors, Model Checking
Software, volume 2318 of Lecture Notes in Computer Science, pages 25–26.
Springer Berlin / Heidelberg, 2002. 10.1007/3-540-46017-9_9.

[12] Ron van der Meyden. Common knowledge and update in finite environments.
i: extended abstract. In Proceedings of the 5th conference on Theoretical aspects of
reasoning about knowledge, TARK ’94, pages 225–242, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[13] Ron van der Meyden. Finite state implementations of knowledge-based pro-
grams. In V. Chandru and V. Vinay, editors, Foundations of Software Technology
and Theoretical Computer Science, volume 1180 of Lecture Notes in Computer
Science, pages 262–273. Springer Berlin / Heidelberg, 1996. 10.1007/3-540-
62034-6_55.

[14] Ron van der Meyden, Peter Gammie, Kai Baukus, Jeremy Lee, Cheng Luo,
and Xiaowei Huang. MCK 1.0.0 User Manual. University of New South Wales,
February 2012.

[15] Michael Wooldridge. Verifying that agents implement a communication
language. In Proceedings of the sixteenth national conference on Artificial intelli-
gence and the eleventh Innovative applications of artificial intelligence conference

27

CS745 Computer Aided Verification Research Project

innovative applications of artificial intelligence, AAAI ’99/IAAI ’99, pages 52–57,
Menlo Park, CA, USA, 1999. American Association for Artificial Intelligence.

28

	List of Figures
	Introduction and Motivation
	An Introduction to Epistemic Logic
	A Model for Epistemic Logic: Possible Worlds Framework
	Epistemic Modal Logic
	The Muddy Children Puzzle

	Problem Description
	Method
	A Representation for Distributed Programs and Specifications
	The Byzantine Generals Problem
	Byzantine General Problem Implementation
	Addition of Masking Fault Tolerance
	A Model of the Byzantine Generals Problem

	Results
	Fault-Intolerant version of BA Without Faults
	Fault-Intolerant version of BA With Faults
	Fault-Tolerant version of BA Without Faults
	Fault-Tolerant version of BA With Faults

	Related Work
	Conclusion and Future Work

