
A Comparison of Python,
JavaScript and Lua
Scripting Language

Features
CS798 Scripting Languages Project Final Presentation

March 31, 2014
Afiya Nusrat, Alexander Pokluda and Michael Wexler

Outline
● Introduction
● Letter Lizard Implementations

○ Python Implementation
○ JavaScript Implementation and Demo
○ Lua Implementation

● Scripting Language Feature Comparison
○ Lexical Structure
○ Data Structures
○ Object Oriented Programming Features
○ Language Specific Features

● Conclusion

Python Implementation

Python Implementation Design

● Utilized PyGame
● Three modules:

○ letter_lizard.py
○ config.py
○ game.py

● At the core of the game is the Game Loop:
○ while (True):

■ Process Events
■ Update Game State
■ Redraw Screen

JavaScript Implementation

JavaScript Implementation Design

● Object-Oriented Design based on callbacks with classes
for manipulating interface and game state:
○ Tile: Represents a letter in the set of letters shown to the player
○ Scramble: Manages set of letters, shuffles them
○ Builder: Handles key presses and moves tiles to form words
○ Word: Represents a word to be found
○ Game: Manages words to be found, generates hints

● Free functions for showing the splash screen, game
screen, etc.

Lua Implementation

Lua Implementation Design

● Game Engine
● Utilises ‘callbacks’
● Game functionality

structured within callbacks
● Update is called continuously

and takes in parameter ‘dt’ -
utilized in the game for
updating gamestate

● Game drawing done in love.
draw

Lexical Structure
Python

● Designed to be highly
readable

● Uses English words
instead of punctuation

● Uses whitespace
indentation rather
than curly braces or
keywords to delimit
blocks

JavaScript
● Free-format
● Automatic semicolon

insertion: some
statements that are
well formed when a
newline is parsed will
be considered
complete

● Curly braces are used
to delimit blocks

Lua
● Free-format
● Newlines used to

delimit statements
● Keywords used to

delimit blocks

Lexical Structure Comparison
Python JavaScript Lua

Strengths Good indentation is
enforced by language
making code easy to
read

Curly brace delimited
blocks means code can
be “minimized” for the
Web

Statements and blocks
delimited by newlines
and keywords help
prevent errors

Weaknesses Tabs and spaces can
easily be mixed which
can lead to bugs

Automatic semicolon
insertion can lead to
errors, eg:

a = b + c
(d + e).foo()

Code can be difficult to
read unless indentation
conventions are followed

Data Structures: Python
● Sequence Types

○ List: mutable sequence of items of arbitrary types
self.letters_guessed = []

○ Tuple: immutable sequence of items of arbitrary types
red = (255, 0, 0)

○ Range: immutable sequence commonly used for looping
for i in range(num):

● Set: mutable containers of items of arbitrary type
self.words_guessed_correct = set([])

● Dictionaries: mutable mappings from keys to values
lengths_to_words = {}

● Can create Lists, Sets, Dictionaries inline with comprehensions

● Fundamental data type: Object
○ Dynamic, unordered collection of properties (name-value

pairs), similar to Python dictionary with String keys
this.words = {};
for (var i = 0; i < game.words.length; ++i) {

var word = game.words[i];
this.words[word] = new Word(word);

}

○ Can be used to simulate sets of strings (by ignoring
values)

○ Language support enables objects to be used as array

Data Structures: JavaScript

Data Structures: JavaScript
● Array: Special type of JavaScript object with integer

keys and automatic length property
shuffle: function() {

// We need to skip tiles that have been moved to the builder
var mytiles = [];
for (var i = 0; i < this.tiles.length; ++i) {

if (this.tiles[i]) {
mytiles.push(i);

} }
mytiles = shuffle(mytiles);
var tilescpy = this.tiles.slice(0);
for (var i = 0, j = 0; i < this.tiles.length; ++i) {

// Move tile at position j to position i
if (this.tiles[i]) {

var tile = tilescpy[mytiles[j++]];
tile.moveTo(this.x + 10 + 60 * i, this.y + 10, true);
tile.scramblePos = i;
this.tiles[i] = tile;

} } }

Data Structures: Lua
● Fundamental data type: Table

○ Similar to JavaScript Objects, but can be indexed with any
value of the language (except nil)

○ The only data structuring mechanism in Lua
○ Tables are associative arrays
○ Can be used to implement arrays, sets, records and other data

structures
○ Ease of creation:

 games_letters = {}
 games_letters = str_to_table(games.easy[1].letters)
 games_words = {}
 games_words = games.easy[1].words

Data Structures: Lua
● Array: Like JavaScript, special support is provided for

tables containing values with integer property names
● Array length operator # returns the largest index in the

array table
function print_array(arr)

for i = 1, (#arr) do
 print(arr[i])
end

end

Data Structures: Comparison
● Although JavaScript and Lua do not offer as many data structures

as Python, most can be easily simulated (but requires extra work)
● JavaScript is the most limiting because object property names must

be strings (or integers)
○ This makes implementing a generic set difficult

● JavaScript objects, Lua tables, and arrays were sufficient for our
implementations

OOP Feature Comparison
Python

● Class mechanisms based
on C++ and Modula-3

● Provides standard
features of OOP including
multiple inheritance and
method overloading

● Private members
provided through name
mangling

JavaScript
● Prototype-based

inheritance
● Can emulate many

features of “classical”
OOP

● Classes can be
dynamically extended and
support “duck typing”

Lua
● Colon operator adds

hidden self parameter to
function calls

● No notion of classes, but
prototype-based
inheritance can be
implemented using
metatables

● Metatables are like
JavaScript prototype, but
more powerful

Conclusion
● We compared the features offered by the

scripting languages Python, JavaScript and
Lua

● The basis of our comparison was the
implementation of the Letter Lizard game in
each language

Conclusion
 Python JavaScript Lua

Main Strengths - “Batteries included”
philosophy makes most
common tasks trivial

- Closures and the
callback-based design
led to clean and modular
code

- Tables provide a
flexible and efficient
multi-purpose data
structures
- The dynamic nature
reduces the amount of
code

Main Weaknesses - Lack of an explicit
variable declaration
statement results in
“broken” lexical scoping
- Performance issues

- Lack of a general-
purpose data structure
makes some tasks
challenging

- Very low-level; you have
to code many basic
functions yourself
- Lack of built-in object
oriented support increases
difficulty in implementing
some features

Questions?

