
University of Waterloo

Cheriton School of Computer Science

CS 798 - Scripting Languages Project Final Report

A Comparison of Python, JavaScript
and Lua Scripting Language Features

Afiya Nusrat, Alexander Pokluda and Michael Wexler

April 4, 2014

Abstract

In this report, we study three different scripting languages–Python, JavaScript and
Lua– and compare the similarities and differences of the features that they offer. Our
comparison is based on the implementation of a simple word game called Letter Lizard.
We have implemented Letter Lizard in each of the three languages using similar data
structures and algorithms as much as possible while taking advantage of each language’s
idiomatic features where appropriate. We start with an overview of the design and
implementation of the game in each language and then compare the features of each
language using example code from each of our Letter Lizard implementations. We finish
by noting which language features made certain aspects of the game easier to implement
and by summarizing the language features that we found most useful. By comparing these
three scripting languages through the implementation of a non-trivial program, we hope
to gain a deeper understanding of, and appreciation for, scripting languages in general
and the tasks for which they are best suited.

CS 798 - Scripting Languages Project Final Report

Table of Contents

List of Figures ii

List of Listings iii

1 Introduction 1
1.1 PyLetterLizard: Python Letter Lizard Implementation 3

1.1.1 Constructs of Python used 4
1.2 LetterLizardJS: JavaScript Letter Lizard Implementation 5
1.3 LuaLetterLizard: Lua Letter Lizard Implementation 8

1.3.1 Lua Game Framework . 11
1.3.2 Game Logic and Implementation 13

2 Scripting Language Feature Comparison 15
2.1 Lexical Structure . 15

2.1.1 Data Structures . 16
2.2 Variable Scope . 19
2.3 Functions . 20

2.3.1 Closures . 20
2.4 Object-Oriented Programming . 22

3 Conclusion 24

i

CS 798 - Scripting Languages Project Final Report

List of Figures

1 Two mockups from our design document demonstrating the pro-
posed Letter Lizard game . 2

2 Screenshots from the Letter Lizard JavaScript implementation . . . 7
3 A class diagram for LetterLizardJS 9
4 The on-screen representation of the Scramble, Builder, Tile and

Word classes. 10
5 Four screenshots from the Letter Lizard Lua implementation . . . 12

ii

CS 798 - Scripting Languages Project Final Report

List of Listings

1 Basic constructs of Python used . 4
2 Demonstration of functional programming constructs in Python . 5
3 LuaLetterLizard menu:init() function 13
4 LuaLetterLizard game:draw() callback method 14
5 Handling the keypressed event in LuaLetterLizard 14
6 An example where automatic semicolon insertion in JavaScript may

lead to unexpected results . 16
7 The interpretation of the previous example 16
8 A user-defined object in JavaScript 17
9 A user-defined object demonstrating dynamic properties 18
10 Declaring tables in LuaLetterlizard 18
11 An array in Lua . 19
12 A demonstration of function scope in Python 19
13 A demonstration of block scope in Lua 20
14 A closure in Lua . 21
15 A closure in JavaScript . 21
16 A class definition in JavaScript . 23

iii

CS 798 - Scripting Languages Project Final Report

1 Introduction

Scripting languages is an increasingly popular and important category of
programming languages. Programs written in scripting languages are often
written for a special run-time environment that can be automated through

scripts–shells and Web browsers are perhaps the two best known examples–or for
a specialized domain, such as text processing. JavaScript and Lua are examples of
the former. JavaScript is used to extend the functionality of Web pages displayed
in a Web browser, while Lua is an extension language that is used in many
commercial and free applications and is widely used in scripting video game
engines. Lua is often chosen for this task because it is designed to be very fast
and easy to embed. General-purpose scripting languages also exist and perhaps
the most well-known one is Python. Python is a widely-used, general-purpose
high-level programming language that emphasizes code readability whose syntax
allows programmers to express concepts in fewer lines of code than would be
possible in a language like C, enabling them to develop applications quicker.
Scripting languages typically have a low barrier to entry and are easier for
programers to get started with and provide a number of features that make them
an important tool for increasing programmer productivity, and distinguish them
from programming languages such as C, C++ and Java. For example, scripting
languages are generally very high-level languages that provide a high level of
abstraction. They are usually dynamically typed and provide automatic memory
management. Many scripting languages can load and execute code dynamically
in the context of the running program by passing a string consisting of program
statements to an exec() function or something similar.

In this report, we study and compare three different scripting languages,
Python, JavaScript, and Lua, and compare the similarities and differences of the
features that they offer. Our comparison of these three languages is based on the
implementation of a simple letter rearrangement game called Letter Lizard. In
the game, the player is presented with a set of letters and their goal is to form as
many dictionary words as possible from the set of letters before the timer runs
out. In order to make the game more engaging and enjoyable, we implemented a
number of features that enable the user to customize their gameplay experience by
providing options to set the number of rounds, the time per round, and the level of
difficulty for each game. We adhered to the same design for each implementation
while also using the idiomatic features of each language as much as possible. The
game proceeds as follows:

• On beginning the game, a welcome screen or a “Splash Screen” is displayed
to the user. The user must hit the spacebar to proceed to the Main Menu

1

CS 798 - Scripting Languages Project Final Report

(a) Main game screen mockup (b) Gameplay mockup

Figure 1: Two mockups from our design document demonstrating the proposed Letter Lizard game
showing (a) the main game screen and (b) the gameplay.

screen.

• The Main Menu screen allows the user to configure game options, such as
the number of rounds, time per round and level of difficulty. After setting
these options, the user clicks Start to begin a new game and is taken to the
main Game screen.

• The Game screen displays the set of letters to the user and allows them to
type words that can be formed from the letters. It also shows the round
number, the amount of time remaining, the user’s score, and placeholders
for all of the dictionary words that can be formed from the set of letters.
After typing a word, the user hits enter and the game engine checks to see
that the word is a valid dictionary word, and, if so, reveals the word in the
list of placeholders. The Game screen also has options to shuffle the set of
letters, generate a hint for a word yet to be found, and return to the main
menu.

All three implementations of Letter Lizard provide graphical user interfaces
that are modelled after the mockups presented in our design document. The
mockups showing the main game screen and gameplay are shown in Figure 1.
Additionally, the internal data structures and algorithms representing the game
state and gameplay are similar in all three implementations.

The set of letters and collection of dictionary words can can be formed from
the set of letters is generated by a Python script called the game generator that
can be run as a standalone, command line program or be imported as a module.
The game generator works by loading a set of dictionaries, generating a set of
scrambled letters, and then finding dictionary words that can be formed by the

2

CS 798 - Scripting Languages Project Final Report

set of scrambled letters. When run as a stand alone program, the default output
of the tool is plain text where each line consists of the set of scrambled letters
followed by all of the dictionary words that can be formed from those letters.
Alternatively, the game generator can be provided with command line parameters
that cause it to output the list of letters and words as JavaScript or Lua source
code that initializes an object or table with the letters and words. The game
generator accepts parameters that configure the number of scrambled letters in
each game, the number of games to generate, and the difficulty of each game. The
dictionary that we used (Spell Checking Oriented Word Lists by Kevin Atkinson)
is partitioned into words that are more frequently used and less frequently used in
common English. When choosing a harder difficulty, the list of words for the user
to find will contain more words that are used less frequently. When generating
the set of scrambled letters, the game generator picks each letter of the alphabet
with a probability corresponding to the frequency that it appears in the dictionary
(which we precomputed ahead of time). In order to find the dictionary words that
can be formed, the game generator iterates through the dictionary and checks to
see if each dictionary word can be formed from the set of scrambled letters, and if
so, it adds it to the list of words for the set of scrambled letters.

The next three sections introduce each language and discuss the Letter Lizard
implementation in that language. Section 2 compares the different features offered
by each language using examples from our three implementations. Section 3
concludes by discussing which language features made certain aspects of the game
easier to implement and summarizes the features that we found most useful.

1.1 PyLetterLizard: Python Letter Lizard Implementation

Python is a multipurpose, high-level programming language. Python has a
friendly syntax, is easy-to-learn [1], and supports object-oriented, structured, and
functional programming. It is used for a variety of applications by organizations
such as Google, YouTube, NASA, and the New York Stock Exchange [4]. The
friendly nature of Python makes it a very good tool to be used in an educational
setting, and many find it useful as a first programming language to learn.

In the Python version of Letter Lizard (PyLetterLizard), we utilize three files,
namely letter_lizard.py, game.py, and config.py. These files all work in tan-
dem to allow PyLetterLizard to operate correctly. To run the application, one can
type python letter_lizard.py at the command line in the PyLetterLizard direc-
tory in our Github repository (uwaterloo-cs798scripting / group4). PyLetter-
Lizard requires Python 2.7 to be installed, as well as the corresponding version of
Pygame. Upon launching, the function main() of letter_lizard.py is called. Be-
fore this occurs, however, the files config.py and game.py are included. config.py

3

CS 798 - Scripting Languages Project Final Report

declares configuration values that affect the placement of various game objects, as
well as declares a couple of utility methods and objects. game.py declares a class
Game which stores the state of a game in PyLetterLizard. We will discuss this
module more in a moment.

When main() of letter_lizard.py executes, Pygame objects are instantiated,
and some screen buttons are created. Then, the game enters an “infinite” loop,
which does three things over and over: processes user input and events, updates
the game state, and redraws the screen. We use the notion of a game state that is a
value which reflects several states that the game can be in. This allows us to know
when to draw objects that represent normal gameplay, as opposed to drawing the
splash screen, menu screen, etc.

As mentioned previously, game.py contains the class Game, which stores the
game state, and contains several methods which allow the game state to be altered.
The reason we decided to use a class to represent a game is because it allows for
the creation of new games quite easily, and separates the functionality of a Game
into a discrete structure.

game.py contains several methods that letter_lizard.py utilizes to update
the game state and process input and events. When a player types a letter, the
method process_letter is called which checks to see if the letter exists in the set
of letters displayed to the player, and updates the data structures correspondingly.
shuffle is called when a user hits the space bar, which uses the random.shuffle

function to randomly shuffle the puzzle word. This aids the player in finding new
words in the puzzle. The method draw allows an instance of the class Game to
draw itself onto the screen. The screen object is passed into the draw method as
an argument. By having the game object be in charge of drawing itself, we avoid
having to include any drawing functionality in letter_lizard.py, which gives
the code tighter cohesion and looser coupling.

1.1.1 Constructs of Python used

1 def process_backspace (s e l f) :
2 s e l f . message = " "
3 i f (len (s e l f . l e t t e r s _ g u e s s e d) >= 1) :
4 l e t t e r _ t o _ d e l e t e = s e l f . l e t t e r s _ g u e s s e d [len (s e l f .

l e t t e r s _ g u e s s e d) − 1]
5 del s e l f . l e t t e r s _ g u e s s e d [len (s e l f . l e t t e r s _ g u e s s e d) − 1]
6 s e l f . p u z z l e _ l e t t e r s _ d i s p l a y e d [s e l f . p u z z l e _ l e t t e r s _ d i s p l a y e d

. index (' ')] = l e t t e r _ t o _ d e l e t e

Listing 1: Basic constructs of Python used

4

CS 798 - Scripting Languages Project Final Report

In the example above, we demonstrate several constructs of Python that we use
in the Letter Lizard implementation. We demonstrate the ability for a Python
class to define a member function (method), where the function has self as its
argument. We use the del command in Python to delete the last element of the
array letters_guessed. This syntax for deleting array elements is a bit different
than in other programming languages.

1 def __f ind_length_counts (s e l f , words) :
2 word_lengths = [len (w) f o r w in words]
3 re turn { length : word_lengths . count (length) f o r length in s e t (

word_lengths) }

Listing 2: Demonstration of functional programming constructs in Python

In the above example, we have a private method __find_length_counts, which
when given an argument words (a list of words), will return a mapping from the
unique counts of letters for each word to a count of how many words have that
number of letters. For this method we utilize some functional aspects of Python.
We use list comprehensions to iterate over all the lengths of word_lengths. We
transform word_lengths into a set so that we only have the unique members.
Then, we iterate over all the elements in that set, and for each one initialize an
element of a new dictionary using a dictionary comprehension that maps a length
value to the count of how many words have that length. The dict() construct
transforms this list of tuples into a dictionary. The above method is used for
generating placeholders for the words to be found in a game.

1.2 LetterLizardJS: JavaScript Letter Lizard Implementation

JavaScript is the “language of the Web” and has become an indispensable tool
for Web developers. Client-side JavaScript scripts executed in Web browsers
are able to bring life to Web pages by interacting with the user, controlling
the behaviour of the browser, performing asynchronous communication with
Web servers and altering the document that is displayed. Although originally
introduced by Netscape for client-side scripting in 1995, it is increasingly more
common for JavaScript to be used in other contexts as well. For example, a recent
trend has been to implement server-side applications in JavaScript as has been
demonstrated by the explosion in popularity of Node.js [5] and other server-side
JavaScript frameworks. Not long after Netscape started shipping JavaScript in
its Navigator browser, it submitted the language to Ecma International and it is
now standardized as ECMA-262 and known as ECMAScript. There are several
well-known implementations of the language that conform to the standard.

JavaScript is a dynamic, prototype-based object-oriented language with first-
class functions. Much of its syntax has been influenced by C, C++ and Java, but

5

CS 798 - Scripting Languages Project Final Report

its semantics are actually very different. JavaScript borrows key design princi-
ples from Self and Scheme. JavaScript supports several different programming
paradigms including object-oriented, imperative, and functional. JavaScript sup-
ports structured programming similar to C with many of the same flow-control
statements such as if, for, while, etc. One notable difference, however, is the
lack of block scoping for variables. Instead, JavaScript uses function scoping
for variables, which means that all variable declared in a function are visible
throughout the entire body of the function. JavaScript also contains a mechanism
that tries to correct faulty programs by automatically inserting semicolons to
complete statements, but quite often this masks more serious errors [2] or results
in unexpected behaviour. We explore these issues further in Sections 2.2 and 2.1
respectively.

JavaScript has a dynamic type system in which types are associated with
values, not variables. A few primitive types are provided by the language, such
as Number, String, Boolean, null and undefined. Aside from the primitive types,
everything else is an object. Objects are composite types that are comprised of
properties: name-value pairs where the name is a String (or an integer for arrays,
we will see more about this in Section 2.1.1) and the value is one of the primitive
types or another object. Even functions are objects (with associated behaviour),
which means that functions are first-class entities that may be assigned to variables
and returned from other functions.

Each JavaScript function also contains a reference to the scope chain that was
in effect when the function was defined, which is used to resolve variable names
to values when the function is executed. A function, together with a reference
to its scope chain is known as a closure (we will cover closures in Section 2.3.1).
JavaScript usually runs in event-driven environments, such as the client-side
environment of a Web browser, that make heavy use of closures and first-class
functions for callbacks.

JavaScript supports object-oriented programming, but not in the classical sense.
Rather than providing class-based inheritance, JavaScript provides prototype-based
inheritance. We discuss object-oriented programming in Section 2.4.

Figure 2 shows eight screenshots from LetterLizardJS. When the player opens
the Letter Lizard game in their browser, they are shown the Splash Screen (Fig-
ure 2a) that provides information about the game and prompted to press the space
bar to continue. After pressing the space bar, the player is presented with the Main
Menu (Figure 2b) that allows them to set the game options, namely the number of
rounds, time per round and level of difficulty. Once the game starts, the player is
presented with a set of letters represented as tiles on the game screen. The player
can move the tiles to form words by typing on the keyboard (Figure 2d). At any
time while playing the game, the player can get help to find additional words by

6

CS 798 - Scripting Languages Project Final Report

(a) Splash Screen (b) Main Menu

(c) Round Number message (d) Game Screen

(e) Hint (f) Good Job message

(g) Time’s Up message (h) Game Over message

Figure 2: Screenshots from the Letter Lizard JavaScript implementation showing (a) the splash
screen, (b) the main menu, (c) a round number message that is displayed at the start
of each round, (d) the main game screen as a user plays the game, (e) an in-game hint,
(f) the “Good Job!” message that is displayed when a player finds all of the words, (g)
the “Time’s Up!” message that is displayed when the user does not find all of the words
before the time runs out, and (h) the “Game Over!” message displayed at the end of the
game.

7

CS 798 - Scripting Languages Project Final Report

pressing the space bar or clicking the Shuffle button to shuffle the letters, or by
requesting a hint by clicking the Hint button (Figure 2e). A number of in-game
messages are displayed to the user while the game is being played, which are
shown in Figures 2c and 2f-2h.

One of the main differences that we first noticed between Python, Lua and
JavaScript had to do with the event-driven nature of the client-side scripting
environment rather than the language itself: at the core of the the Python im-
plementation is a game loop that processes events and redraws the screen. The
Lua implementation does not have a game loop like Python, but it still has an
update function that draws every frame of the game to the screen, whereas the
JavaScript version does not have any such construct. Rather, the JavaScript version
is entirely event driven. The game loop and update functions Python and Lua
naturally led to a more procedural-based design, but the event-driven JavaScript
environment naturally led to a more modular, object-oriented design. Most of
the functionality of LetterLizardJS is implemented by the six classes shown in
Figure 3. The Tile, Scrabmle, Builder and Word classes also draw themselves on
the main game screen and their on-screen representation is shown in Figure 4.
The Scramble class is responsible for creating Tiles for the letters that will be
shown to the user and initially places those tiles on itself on the game screen. It
also provides a shuffle method to rearrange the tiles when requested. The Builder
class moves the Tiles to form words when the user types on the keyboard and
also displays hints. The Game class is responsible for creating Word objects to
represent words to be found. It also gets the characters that the user has typed
from the Builder class and checks to see if they are valid words. If so, it causes the
corresponding Word object to show itself in the word list. The Game class also
updates the player’s score when they find a word and manages the game timer.

The code for our JavaScript implementation can be found in our Github repos-
itory (uwaterloo-cs798scripting / group4) under the LetterLizardJS folder. To
play the game, you simply need to load the index.html file in your browser;
however, due to the security policies of most Web browsers that restrict the
functionality of scripts loaded as local files, you will likely have to run an
HTTP server on your local machine and load the index.html file through your
server in order to play the game. Alternatively, we invite you to play the
game using a server that we have set up at using the following URL: http:
//dahu.in/static/LetterLizardJS/index.html.

1.3 LuaLetterLizard: Lua Letter Lizard Implementation

Lua is a light weight programming language designed as a scripting language.
Lua is generally described as a “multi-paradigm” programming language because

8

http://dahu.in/static/LetterLizardJS/index.html
http://dahu.in/static/LetterLizardJS/index.html

CS 798 - Scripting Languages Project Final Report

1
builder

1

*

- words {ordered}

1

1

- t imer

1

Game
- letters: String
- numWordsRemaining: Number
checkWord()
updateScore(increment: Number)
showHint()
nextRoundOrEnd()
stop()

Timer
- timeRemaining
- handle
+ ontimeup: Function
«constructor»
Timer(duration: Number)
start()
stop()

*
- t i les {ordered}

1

1
- scramble

1

Builder
- x: Number
- y: Number
- hintTiles: Tile[*]
takeTile(letter: String)
getWord(): String
returnTile()
reset()
showHint(hint: String)
clearHint()

Word
word: String
shown: Boolean
elem: «DOM Object»
show(notfound: Boolean)
points(): Number

* - t i les {ordered} 1

Scramble
- letters: String
- x: Number
- y: Number
«constructor»
Scramble(letters: String, x, y, w)
getTile(letter: String)
returnTile(tile: Tile)
shuffle()

Tile
- letter: String
- saved: Object
+ container: Object
«constructor»
Tile(letter: String)
placeAt(x, y)
moveTo(x, y)
reset()

Figure 3: A class diagram showing the classes that make up the Letter Lizard JavaScript imple-
mentation. The event-driven, callback-based client-side scripting environment naturally
led to a modularized, class-based design for this implementation.

9

CS 798 - Scripting Languages Project Final Report

Figure 4: The on-screen representation of the Scramble, Builder, Tile and Word classes.

it provides a small set of extensible features that can be extended to fit various
problems rather than providing definite features for a specific paradigms. Lua
has a short learning curve, is easy to pick up, and has a number of features which
endorse its reputation. It does not, however, support inheritance but allows it to be
implemented by using metatables. A table is a fundamental data structure in Lua
that can be used to represent everything. Tables are in fact the only data structure
in Lua and can be used to implement other data structures such as arrays, sets,
lists, records and other data structures. Lua tables can be used to implement
features such as namespaces and classes, and in this sense has a lot of similarities
with JavaScript. For instance, tables in Lua are quite similar to JavaScript objects–
the only difference being that in JavaScript, objects can be indexed with only string
or integer values. Lua tables, on the other hand, can be indexed with any value
of the language (except nil). Lua is dynamically typed and is light enough to fit
on any operating system. The Lua interpreter is extremely lightweight; it is only
180 kB when compiled, and therefore is very fast when compared to Python and
JavaScript. It is a minimal but powerful language. By including only a minimal
set of data types, Lua attempts to strike a balance between power and size [6]. Lua
is often used in game development because of its speed, portability, embeddable
nature and simple but powerful design. In order to enable embedding in other
languages, Lua provides a well documented API to extend programs written in
other languages.

10

CS 798 - Scripting Languages Project Final Report

A number of important language features in Lua include first-class functions,
dynamic module loading, automatic coercion, and closures. Although Lua does
not support the object-oriented concepts of classes and methods, they can be
simulated using tables and first-class functions. By placing functions and related
data into a table, objects are formed. Inheritance can be implemented using
metatables. It is similar to JavaScript in this way as there is no explicit concept
of a class in Lua; rather, prototypes are used similarly to JavaScript and new
objects are created by a factory method, i.e, by cloning existing objects. Lua
provides “syntactic sugar” to facilitate object-orientated programming techniques.
In order to declare member functions inside a table, the programmer can use
table:func(args). The colon operator adds a hidden “self” parameter to function
calls.

1.3.1 Lua Game Framework

We used a framework called LÖVE for developing the Lua-based implementation
of Letter Lizard. LÖVE is a free, open source framework for building 2D games in
Lua. The LÖVE framework has cross platform adaptability and was installed from
the LÖVE homepage [3]. To run a game, LÖVE can load a game in two ways: from
a folder that contains a main.lua file, or from a .love file that has a main.lua

in the root directory. LÖVE utilizes callback functions to perform various tasks.
LÖVE provides placeholders for callback functions in order to structure the game
logic. For instance, the love.load function is called only once when the game is
started and is usually used to to load resources, initialize variables and set specific
settings. The love.draw function is where all the drawing happens and if any of
the love.graphics.draw objects are called outside of this function, they will not
have any effect. Figure 5 shows some screenshots from the Lua version of Letter
Lizard.

The game structure consists of five different Lua modules. These are main.lua,
conf.lua, games.lua, helper_functions.lua, gamestate.lua and config.lua.
The main.lua module is the driver of the game and utilizes all the other modules.
conf.lua contains game configurations and is run exactly once before main.lua

by LÖVE. games.lua contains 300 games pre-generated using game generator
program. gamestate.lua was taken from a small Lua utility library and enables
us to maintain state information within the game and allow us to switch be-
tween states. Since Lua is a very low-level language, we had to code a lot of
functionality on our own. These free standing functions are contained in the
helper_functions.lua module. config.lua contains additional game configu-
rations which are used by main.lua to drive the game. In order to execute the
game we need to run the LÖVE executable and give the directory containing the

11

CS 798 - Scripting Languages Project Final Report

(a) Splash Screen (b) Game Screen

(c) Gameplay Mode (d) Game Over

Figure 5: Four screenshots from LuaLetterLizard showing (a) the splash screen, (b) the main game
screen, (c) the “Good Job!” message that is displayed after the player finds a word, and
(d) the ”Time’s Up!” message that is displayed when the timer runs out.

12

CS 798 - Scripting Languages Project Final Report

main.lua file as an argument. LuaLetterLizard can be launched by running the
command love LuaLetterLizard in our uwaterloo-cs798scripting / group4

Github repository directory.

1.3.2 Game Logic and Implementation

The main.lua file contains the main game logic structured within callback func-
tions. In this file, we declare two Lua table structures, menu and game. We
implement metatables a powerful feature provided by Lua, to enable the concept
of state within the game. Within the menu table we declare functions which are
associated with the menu and are called only when menu is the current state of
the game. Within the game structure, we declare functions which are called only
when the we enter the gameplay mode.

The menu table contains functions that are called when we start the game and
the splash screen is loaded, as shown below. The function menu:init() is called
when the game is first loaded into memory and the splash screen is displayed.
In order to actually draw the splash screen, the function menu:draw() is called.
Within the love.keypressed() function we check if the player has hit the space
bar, and if so, the state of the game is switched to “game” and the associated
callback functions are then called. All of the game play logic is structured within
the game table. LÖVE is different from Pygame in that there is no infinite loop
which keeps running. Rather, callbacks are called as and when required. However,
there is still an update function, love.update(), that is called to render each
frame of the game. It is passed a parameter dt which is the time passed since the
last time update was called.

1 l o c a l menu = { }
2 funct ion menu : i n i t ()
3 splash = love.graphics .newImage (" splash.png ")
4 end
5
6 funct ion menu : draw ()
7 l o v e . g r a p h i c s . s e t C o l o r (2 5 5 , 2 5 5 , 2 5 5 , 2 5 5)
8 love .graphics .draw (splash , 0 , 0)
9 end

Listing 3: LuaLetterLizard menu:init() function

Once we enter into the game mode, the corresponding callback functions
defined in the game table are called. For instance, in the following code snippet,
the function game:draw() is called to draw objects onto the screen while we
are currently in the gameplay state i.e., the default love.draw() function is
overridden. Hence, callbacks defined when in a particular state are called as and
when required.

13

CS 798 - Scripting Languages Project Final Report

1 funct ion game : draw ()
2 l o v e . g r a p h i c s . s e t C o l o r (black)
3 l o v e . g r a p h i c s . l i n e (7 0 0 , 0 , 700 , 500)
4 f o r i , l e t t e r in i p a i r s (l e t t e r s _ g u e s s e d) do
5 x = l e t t e r s _ g u e s s e d _ l e f t + i * square_width + i * spacing
6 y = l e t t e r s _ g u e s s e d _ t o p
7 l o v e . g r a p h i c s . r e c t a n g l e (" l i n e " , x , y , square_width ,

square_width)
8 l o v e . g r a p h i c s . s e t F o n t (number_fnt_40)
9 l o v e . g r a p h i c s . p r i n t (l e t t e r , x + square_width /4 , y +

square_width /5)
10 end
11 . . .
12 end

Listing 4: LuaLetterLizard game:draw() callback method

In order to maintain the game state, we utilized an external Lua library called
“hump.” This is a lightweight library which contains helper code for embedding a
set of different functionality within our code. Since Lua is very low level, we had
to code a lot of functionality ourselves, and using hump minimized extra work
for us considering the time constraints. This was another advantage of using the
LÖVE framework, as LÖVE has a very good online community; many helpful
libraries have been implemented by other Lua game developers and can be used
under the open source licenses. Another important part of the game logic is
checking for events. For this, we utilized the callback functions defined by LÖVE,
love.keypressed() and love.mousepressed(). Within the former callback we
check for events that fire when a keyboard key is pressed by the player and define
logic for the corresponding action that needs to be taken, whereas in the later
we check for events when the player click a particular button which fires the
corresponding actions. In the following code snippet, we check if the space key
has been pressed by the player while we are in state “menu” and if so, we switch
the game state to “game” to begin playing the game.

1 funct ion menu : keypressed (key)
2 i f key == ' ' then
3 Gamestate .switch (game)
4 end
5 end

Listing 5: Handling the keypressed event in LuaLetterLizard

14

CS 798 - Scripting Languages Project Final Report

2 Scripting Language Feature Comparison

Now that we have introduced the three implementations of our Letter
Lizard game, we will will compare and contrast the differences between
each language, noting their strengths and weaknesses, using example

code from our implementations where possible. When coding the Letter Lizard
game in each language, we tried to follow the same structure as much as possible,
however, as was noted in Section 1.2 the event-driven environment of client-side
JavaScript naturally led to a different design for that implementation. Due to space
constraints, we will skip over some of the differences that we noticed between
the types, variables and values (including the numeric, boolean and string types
and the null, undefined and nil special values) offered by each language. We will,
however, discuss the differences between the data structures offered by Python
(i.e. lists, tuples and dictionaries), JavaScript (i.e. objects and arrays) and Lua (i.e.
tables and arrays). We noted differences between the syntax and semantics of
expressions and statements in each language, as well as the flow control constructs
offered, which we will omit; however, we will discuss variable scope, functions,
and closures. The first major difference that we noticed between the languages
was non-functional: each employed a different lexical structure, which we discuss
next.

2.1 Lexical Structure

Since we implemented the game in three different languages we were able to
examine the difference in lexical structure quite minutely. The syntax of a pro-
gramming language defines the set of symbols that are considered to be a correctly
structured program in that language. Python is designed to be a highly readable
language and prefers the use of English words instead of punctuation marks. As
compared to other languages, Python uses white space indention rather than
curly braces or keywords to delimit blocks. This is a strength of the language as
good indention is enforced by the language itself and makes for highly readable,
clean code. However, on the downside, tabs and spaces can be easily mixed up
leaving bugs in the code.

JavaScript uses blocks delimited by curly braces which means that code can
be “minimized” for the Web. However, automatic semicolon insertion can lead to
errors and is generally not considered very good by JavaScript programmers. This
is one of the controversial syntactic features of JavaScript. For instance, consider
the following code snippet:

15

CS 798 - Scripting Languages Project Final Report

1 a = b + c
2 (d + e) . p r i n t ()

Listing 6: An example where automatic semicolon insertion in JavaScript may lead to unexpected
results

In this example, the code is not transformed by automatic semicolon inser-
tion, because the parenthesized expression that begins the second line can be
interpreted as an argument list for a function call:

1 a = b + c (d + e) . p r i n t ()

Listing 7: The interpretation of the previous example

In Lua the statements and blocks are delimited by newlines and keywords
to begin and end constructs which helps to minimize errors, but it can lead to
extremely messy code unless indention conventions are strictly followed.

2.1.1 Data Structures

A data structure is a particular way of storing and organizing data in a computer
program so that it can be used efficiently. There are different kinds of data
structures available which are suited for performing different tasks. In our
implementations of Letter Lizard, we extensively used the different data structures
provided by each language for holding, structuring and manipulating our data
efficiently. All three of our implementations used data structures for holding the
scrambled puzzle letters, letters guessed correctly, letters to be displayed on the
screen and so on. We will now describe the data structures in all three of our
implementations.

Python: Arrays, Lists, Tuples and Dictionaries Unlike JavaScript and Lua,
which each provide only one data structure, Python provides a rich set of built-in
data structures. The primary data structures used by Python programs are:

list mutable sequences of items of arbitrary type

tuple immutable sequence of items of arbitrary type

range immutable sequence commonly used for looping

set mutable container of items of arbitrary type

dictionary mutable mapping of keys to corresponding values

16

CS 798 - Scripting Languages Project Final Report

Python provides a concise way to create lists, sets and dictionaries called
“comprehensions.” These are commonly used to initialize new data structures
where each element is the result of certain operations that are applied to each
member of another sequence or iterable object, or meets some sort of filter condi-
tion. We previously gave an example in Section 1.1.1 where we had used set and
dictionary comprehensions to initialize a set and dictionary. List comprehensions
also facilitate functional programming in Python.

JavaScript: Objects JavaScript has one fundamental datatype: object. Everything
that is not either a primitive type, null, or undefined is an object. (The primitive
types in JavaScript are number, string, and boolean. Although they are not objects,
they behave like immutable objects). Objects are composite values that aggregate
multiple values, which may be primitive types or other objects, and allow you to
store and retrieve those values by name. Objects are similar to Python’s dictionary
and Lua’s table data structure, but unlike Python’s dictionary, objects are a core
feature of JavaScript. All variables are contained within objects and, as we will
see later in Section 2.3, even the scope of a variable is implemented in terms of a
chain (or linked list) of objects. Lua’s tables are very similar to JavaScript objects
and play a similar role in the implementation of the language, but they are even
more powerful.

JavaScript objects are dynamic–rather than having a static type, properties can
be added and removed at run-time and support “duck typing.” LetterLizardJS
makes use of many user-defined objects. The following code defines an object
letterpoints that maps letters (property names) to the number of points that the
letter is worth (property values) when included in a word found by the player:

1 var l e t t e r p o i n t s = {
2 'A ' : 3 ,
3 ' B ' : 8 ,
4 'C ' : 6 ,
5 . . .
6 'Z ' : 10
7 } ;

Listing 8: A user-defined object in JavaScript

Another example of a user-defined object in LetterLizardJS is shown below.
This code snippet is from the Game constructor function. It adds a property called
words to the Game object being constructed and assigns an empty object to it on
line 2. It then iterates through a randomly chosen “game” (i.e. a randomly chosen
set of letters and corresponding words to be found) and creates a Word object
to represent each word to be found. Word objects draw themselves to the screen
either as text or a placeholder when the word is yet to be found. The Word objects

17

CS 798 - Scripting Languages Project Final Report

are assigned to the words object by dynamically creating properties mapping the
text of each word to its corresponding Word object.

1 var game = games [conf ig . d i f f i c u l t y] [i] ;
2 t h i s . words = { } ;
3 f o r (var i = 0 ; i < game . words . length ; ++ i) {
4 var word = game . words [i] ;
5 t h i s . words [word] = new Word(word) ;
6 }

Listing 9: A user-defined object demonstrating dynamic properties

JavaScript also provides special support for using objects as arrays. When an
object is created using the array literal syntax [] or Array constructor, Array() and
property names are integer values, the language provides a length property on
the object that is automatically updated to reflect the number of elements in the
array.

Lua: Tables Lua offers a single, fundamental data structure: table. Tables are
the only data structure in Lua. All the other structures that the language offers
can be represented as Tables efficiently. In traditional languages like C and C++,
most of the structures are represented with arrays and lists. However, in Lua,
tables are more powerful than either. The algorithms used for implementing these
structures in traditional languages are simplified with the use of tables. Tables
offer direct access to any type. Tables are fundamentally associative arrays, i.e.,
they are key-value pairs in which the keys can be any legitimate value in Lua.
Tables are quite similar to the object type of JavaScript, the difference being that
with JavaScript objects the keys can be only either strings or integers, whereas
in Lua tables the keys can be any value in Lua except nil. We now describe the
different structures in Lua that we defined using tables. Tables are very easy to
create. An empty table can be assigned to any variable by specifying empty curly
braces which denotes an empty table constructor. For instance, throughout our
code, we have declared tables easily and efficiently as shown in the following
code.

1 games_ le t te rs = { }
2 l e t t e r s _ g u e s s e d = { }
3 s o l u t i o n s = { }
4 words_guessed_correct = { }

Listing 10: Declaring tables in LuaLetterlizard

Arrays in Lua can be implemented efficiently using Lua tables by simply
indexing the tables with integers. Hence, arrays do not have a finite size, instead
they can grow in size as needed. The following code snippet is an example of

18

CS 798 - Scripting Languages Project Final Report

an array implementation from Lua Letter Lizard. By convention, array indexing
starts from 1 in Lua.

1 games_words = games.easy [i] .words

Listing 11: An array, games.easy, that holds pre-generated game puzzles and is easily accessed
by indexing into the table

Metatables are a very powerful feature offered by Lua. Metatables allow us
to change the behaviour of a table. For instance, using metatables we can define
how Lua computes the expression a+b where a and b are tables and establish
prototype chains like we have in JavaScript.

2.2 Variable Scope

Overall, we discovered that Lua and JavaScript have many more similarities with
each other than they do with Python; however, variable scope is one area where
this differs. Both Python and JavaScript implement function scoping. The only
means to create a scope for a variable in Python is a function, class or module and
only a function in JavaScript. The official Python documentation states: “If a name
binding operation occurs anywhere within a code block, all uses of the name
within the block are treated as references to the current block [8].” This subtle point
can lead to surprising results, especially for programmers not intimately familiar
with the scoping rules in these languages. Consider the following example:

1 a = 42
2 def f () :
3 p r i n t (a)
4 i f (True) :
5 a = 43
6 f ()

Listing 12: A demonstration of function scope in Python

Most programmers familiar with the block scoping rules of C, C++, and Java
would expect this code to print 42; however, it results in an UnboundLocalError

because the assignment on line 5 creates a new local variable called “a” that
shadows the variable with the same name at the global scope and is visible
throughout the entire function, but when line 3 is executed, this variable has
not yet been assigned a value. Also, because Python lacks an explicit variable
declaration statement, it is not clear whether the assignment on line 5 was intended
to create a new local variable or change the value of the global variable. In fact,
prior to Python 3, there was no way for code in an inner scope to assign a
value to an enclosing scope that was not the global scope. Some developers call

19

CS 798 - Scripting Languages Project Final Report

this “broken lexical scoping” and Python 3 fixes it with the introduction of the
nonlocal statement.

JavaScript uses function scoping for variables, similar to Python, which means
that all variables declared in a function are visible throughout the entire body of
the function. Unlike Python, though, JavaScript has an explicit variable declaration
statement, which is known as “hoisting:” JavaScript code behaves as if all variable
declarations in a function are hoisted to the top of the function. In both languages,
this feature can easily cause bugs that are hard to find when local variables
shadow variables in an outer scope, and for this reason it is considered a negative
feature [2].

On the other hand, Lua implements block scope similar to C, C++ and Java.
The body of a control structure, body of a function, or chunk (a segment of code
that is treated as a unit) all introduce new scopes. Additionally, new scopes can be
created explicitly with the keywords do ... end. The scope of a declared variable
begins after the declaration and goes until the end of the block. When written in
Lua, as shown below, the previous example will print 42.

1 a = 42
2 funct ion f ()
3 p r i n t (a)
4 i f (t rue) then
5 l o c a l a = 43
6 end
7 end
8 f ()

Listing 13: A demonstration of block scope in Lua

2.3 Functions

All three languages support first-class functions: functions can be stored in
variables, passed as arguments to other functions, and be returned from functions
as results. First class functions give these languages great flexibility: functions
can be redefined to change their behaviour, or even erased to create a secure
environment for untrusted code. Perhaps most importantly, functions can be
nested and have access to the scope where they were defined. This means that
functions in these languages are closures and this enables some important and
powerful techniques that will be discussed next.

2.3.1 Closures

In addition to first-class functions, all three languages also support closures. Every
function contains a reference to the scope chain that was in effect when the

20

CS 798 - Scripting Languages Project Final Report

function was defined, which is used to resolve variable names to values when the
function is executed. A function, together with a reference to its scope chain is
known as a closure. All three implementations make use of first-class functions
and closures for implementing callbacks, especially the JavaScript version due
to the event-driven nature of the client-side scripting environment in the Web
browser.

The following example from LuaLetterLizard demonstrates the use of a closure
for registering a set of callbacks to be called by the LÖVE game library when
certain events occur. The variable registry is defined in registerEvents but also
accessed in an anonymous inner function, which is made possible by the closure.

1 funct ion G S . r e g i s t e r E v e n t s (c a l l b a c k s)
2 l o c a l r e g i s t r y = { }
3 c a l l b a c k s = c a l l b a c k s or a l l _ c a l l b a c k s
4 f o r _ , f in i p a i r s (c a l l b a c k s) do
5 r e g i s t r y [f] = love [f] or __NULL__
6 love [f] = funct ion (. . .)
7 r e g i s t r y [f] (. . .)
8 re turn GS[f] (. . .)
9 end

10 end
11 end

Listing 14: A closure in Lua

The next example is from LetterLizardJS. A callback function is assigned to the
timer object’s ontimeup property that is called when the time remaining reaches
zero. This code snippet is contained within the Game constructor and the inner
function needs access to the Game objects, so we first store the value of this (which
refers to the Game object) in a variable called that, which will be contained within
the closure and accessible to the inner function.

1 var t h a t = t h i s ;
2 t h i s . t imer . ontimeup = funct ion () {
3 timeup = true ;
4 f o r (var word in t h a t . words) {
5 t h a t . words [word] . show (true) ;
6 }
7 t h a t . nextRoundOrEnd () ;
8 } ;

Listing 15: A closure in JavaScript

21

CS 798 - Scripting Languages Project Final Report

2.4 Object-Oriented Programming

All three languages take a different approach to object-oriented programming.
Python supports a traditional class-base inheritance model, while JavaScript
supports a protoype-based inheritance model.

Python Python utilizes object-oriented programming in a fairly typical sense. It
utilizes the class keyword in order to declare a class. It combines OOP constructs
from C++ and Modula-3. In Python, one can utilize multiple base classes. Derived
classes are able to override any methods of its base classes, and methods can call
methods of base classes with the same name. In Python, to set a variable x to
be equal to a new instance of a class Person, one can simply write x = Person().
Python does not use the new operator. [7]

Python utilizes the convention that the variable self as the first argument of
instance methods of a class, will essentially act as the this keyword often found
in other languages. The self keyword can be replaced with any word of one’s
choosing. Some may find this construct a bit clumsy, as one has to repeatedly
type the same variable over and over again in the beginning of the argument list
of each method.

Unlike languages such as Java or C++, Python does not have any true concept
of private variables. Rather, Python encourages a culture where programmers are
"trusted" to not access variables they are not privy to. A convention that has been
established is to use underscores at the beginning of a variable name to denote
that it is a private variable.

JavaScript JavaScript supports object-oriented programming, but not in the
classical sense. Rather than providing class-based inheritance, JavaScript provides
prototype-based inheritance. In addition to having their own set of properties (known
as “own properties”) every object is associated with and inherits properties from
another object called its prototype, indicated by its prototype property (occasionally
the value of the prototype property will be null, but this is rare).

Many programmers who are new to JavaScript who come from a C, C++, or
Java background find JavaScript’s prototype-based inheritance confusing at first;
however, it is really quite simple and works nicely with JavaScript’s dynamic
nature. If a requested property is not an own property of an object, then its proto-
type, its prototype’s prototype, etc. are searched recursively until the property is
found. Most classical object-oriented features including static class-based objects,
structs and inheritance hierarchies can be easily simulated in JavaScript.

Prototypal inheritance is a key feature of JavaScript, and LetterLizardJS makes
extensive use of objects and protoypes. The following shows the definition of

22

CS 798 - Scripting Languages Project Final Report

the Tile constructor function and its prototype object. The constructor function is
used to create a class of objects that have their own properties to hold their state,
but share behaviour inherited from the prototype object:

1 funct ion T i l e (l e t t e r) {
2 t h i s . l e t t e r = l e t t e r ;
3 t h i s . saved = { } ;
4 }
5
6 T i l e . prototype = {
7 placeAt : funct ion (x , y) {
8 t h i s . co nt a i ne r . x = x ;
9 t h i s . co nt a i ne r . y = y ;

10 t h i s . saved . x = x ;
11 t h i s . saved . y = y ;
12 } ,
13
14 moveTo : funct ion (x , y , save) {
15 // Moves the t i l e to the s p e c i f i e d x and y coordinates .
16 // This funct ion i s c a l l e d by the Scramble and Bui lder c l a s s e s
17 c r e a t e j s . Tween . get (t h i s . co nt a i ne r) . to ({ x : x , y : y } , 500) ;
18 i f (save) {
19 t h i s . saved . x = x ;
20 t h i s . saved . y = y ;
21 }
22 } ,
23
24 r e s e t : funct ion () {
25 t h i s . moveTo (t h i s . saved . x , t h i s . saved . y) ;
26 } ,
27 } ;

Listing 16: A class definition in JavaScript

Lua Lua does not directly implement object-oriented features, but these can
be simulated using tables. Similar to objects, tables have a state and identity
independent of their values. Two tables with the same value are two different
objects. We can store different values within a table field and access it using the
dot operator. Lua tables also have support for the self parameter which tells
the method on which object it has to operate. With the use of the self parameter,
the same method can be used to act on many objects. Lua adds a hidden self
parameter with the colon operator. There is no notion of a ’class’, but prototype
based inheritance can be implemented using metatables which are similar to
JavaScript objects but are more powerful.

23

CS 798 - Scripting Languages Project Final Report

3 Conclusion

We have gained a deeper understanding and appreciation for scripting
languages by implementing a non-trivial program, the Letter Lizard
game, in three different scripting languages and comparing the imple-

mentations. We found that it was fairly easy to implement the game in all three
languages, and that the effort required was less that would have been required
to implement the game in a static language such as C, C++ or Java. Of the three
implementations, we found that JavaScript required the least amount of effort due
to the high-level functionality and event-driven nature of the client-side scripting
environment provided by Web browsers. Of all the features that we used, we
found first-class functions and closures to be the most useful. First-class functions
and closures made writing callback functions for event-driven programming sim-
ple and easy, and led to a clean, modular design. We avoided some of the negative
features of JavaScript, such as automatic semicolon insertion, by always finishing
statements with an explicit semicolon. Although JavaScript objects are not as pow-
erful as Lua tables, we did not encounter any limitations in our implementation.
Similarly, although Python’s “broken lexical scoping” may cause problems for
some programs, we did not encounter any difficulty with our implementation.
Overall, we gained a deeper understanding of, and appreciation for, scripting
languages and their ability to enable rapid application development and we will
likely use scripting languages more often in the future.

References

[1] About Python. https://www.python.org/about/, 2014. Python Software
Foundation.

[2] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., Sebastopol,
CA, May 2008.

[3] Getting Started - LOVE. http://http://www.love2d.org/wiki/Getting_

Started, 2014.

[4] Getting Started with Python. http://python.about.com/od/gettingstarted/
ss/whatispython_3.htm1, 2014. About.com.

[5] node.js. http://nodejs.org/. Joyent, Inc.

[6] The Programming Language Lua. http://www.lua.org. PUC Rio.

24

https://www.python.org/about/
http://http://www.love2d.org/wiki/Getting_Started
http://http://www.love2d.org/wiki/Getting_Started
http://python.about.com/od/gettingstarted/ss/whatispython_3.htm1
http://python.about.com/od/gettingstarted/ss/whatispython_3.htm1
http://nodejs.org/
http://www.lua.org

CS 798 - Scripting Languages Project Final Report

[7] Python Classes. https://docs.python.org/2/tutorial/classes.html, 2014.

[8] The python language reference: 4. execution model. https://docs.python.

org/2/reference/executionmodel.html, 2014. Python Software Foundation.

25

https://docs.python.org/2/tutorial/classes.html
https://docs.python.org/2/reference/executionmodel.html
https://docs.python.org/2/reference/executionmodel.html

	List of Figures
	List of Listings
	Introduction
	PyLetterLizard: Python Letter Lizard Implementation
	Constructs of Python used

	LetterLizardJS: JavaScript Letter Lizard Implementation
	LuaLetterLizard: Lua Letter Lizard Implementation
	Lua Game Framework
	Game Logic and Implementation

	Scripting Language Feature Comparison
	Lexical Structure
	Data Structures

	Variable Scope
	Functions
	Closures

	Object-Oriented Programming

	Conclusion

