
THE HADOOP

DISTRIBUTED FILE SYSTEM

Konstantin Shvachko, Hairong Kuang, 

Sanjay Radia, Robert Chansler

Presented by Alexander Pokluda

October 7, 2013



Outline

• Motivation and Overview of Hadoop

• Architecture, Design & Implementation of the 
Hadoop Distributed File System (HDFS)

– Comparison with Google File System (GFS)

• Performance Benchmarks

• Conclusion



MOTIVATION AND

OVERVIEW



Motivation and Overview

Google File System (GFS)

MapReduce

?? ??

??

??

Hadoop Distributed File 
System (HDFS)

MapReduce

Pig Hive Sqoop

HBase

• In the early 2000’s, Google developed the “Google File System” to support 
large distributed data-intensive applications

• Shortly after, they developed “MapReduce” to allow developers to easily 
carry out large scale parallel computations
• Examples: processing crawled documents, web request logs, etc. to 

produce inverted indices, statistics, etc.
• Hadoop is an open source implementation of Google’s proprietary 

MapReduce framework; HDFS is the file system component of Hadoop



ARCHITECTURE, DESIGN

AND IMPLEMENTATION



HDFS Architecture

NameNode Maintains namespace hierarchy and file system metadata such as 
block locations

Namespace and metadata is stored in RAM but periodically 
flushed to disk. Modification log keeps on-disk image up to date.

DataNodes Stores HDFS file data in local file system

Receives commands from NameNode that instruct it to:

HDFS 
Client

Code library that exports HDFS file system interface to applications

Reads data by transferring data from a DataNode directly

Writes data by setting up a node-to-node pipeline and sends data 
to the first DataNode

• Replicate blocks to other nodes
• Remove local block replicas

• Re-register or shutdown
• Send immediate block report



Redundancy Mechanisms

Image and Journal

• An image is the file system metadata that describes organization of 
application data as directories and files

• A persistent record of it written to disk is called a checkpoint

• The journal is a write-ahead commit log for changes that must be 
persistent

CheckpointNode and BackupNode

• A NameNode can alternatively be run as a CheckpointNode or 
BackupNode

• The CheckpointNode periodically combines the existing checkpoint 
and journal to create a new checkpoint and empty journal

• A BackupNode acts like a shadow of the NameNode and keeps an 
up-to-date copy of the image in memory



File I/O Operations and Replica 
Management

File Read and Write

• An application adds data to HDFS by creating a new file and writing data to it

• All files are read and append only

• HDFS implements a single-writer, multiple-reader model

Data Streaming

• When there is need for a new block, the NameNode allocates a new block ID and 
determines a list of DataNodes to host replicas of the block

• Data is sent to the DataNodes in a pipeline fashion

• Data may not be visible to readers until the file is closed

Block Placement

• Default Strategy ensures:

• No DataNode contains more than one replica of any block

• No rack contains more than two replicas of the same block



File Write Operation

Source: The Hadoop Distributed File System



Data Replication

1

2

2

5
3 4

1 4 2 5

3

5

4

DataNodes

Rack A Rack B

/users/apokluda/log, r:2, {1, 3}, …
/users/apokluda/data, r:3, {2, 4, 5}, …

NameNode



HADOOP DISTRIBUTED

FILE SYSTEM VS

GOOGLE FILE SYSTEM



HDFS vs GFS
Implementation

Architecture

Hadoop Distributed File System Google File System

Platform Cross-platform (Java) Linux (C/C++)

License Open source (Apache 2.0) Proprietary (in-house use only)

Developer(s) Yahoo! and open source 
community

Google

Hadoop Distributed File System Google File System

Architecture Pattern Single NameNode has a global view of the entire file system

Deployment Hardware Commodity servers (design to tolerate component failures)

Inter-Node 

Communication

NameNode uses heartbeats to send commands to DataNodes

DataNode Design User-level server process stores blocks as files in local file system



HDFS vs GFS
File System State

Hadoop Distributed File System Google File System

File Index State File index state and mapping of files to blocks kept in memory at 
NameNode and periodically flushed to disk; modification log 

records changes in between checkpoints

Block Location State NameNode maintains and 
persistently stores block 
location information

Block location information sent 
to NameNode by DataNodes on 
startup; not stored persistently 
at NameNode

Data Integrity Checksums verified by 
clients

Checksums verified by 
DataNodes



HDFS vs GFS
File System Operations

Hadoop Distributed File System Google File System

Write Operations • Append only • Random offset write
• Record append
• Append

Write Consistency 
Guarantees

Single-writer model ensures 
files are always defined and 
consistent

• Successful concurrent writes 
create consistent but 
undefined regions

• Successful concurrent 
record appends create 
defined regions interspersed 
with inconsistent

Deletion Deleted files renamed to a special Trash/Recycling Bin-like folder 
and removed lazily by garbage collection process

Snapshots HDFS 2 allows each directory to 
have up to 65,536 snapshots

Can snapshot individual files 
and directories

Block Size 128 MB default but user 
configurable per file

64 MB default but user 
configurable per file



HDFS vs GFS
Use Cases

Hadoop Distributed File System Google File System

Primary Use General purpose (production services, R&D) and MapReduce jobs

Data Access Pattern Random access reads supported but optimized for streaming

File Size Optimized for Large Files

Replication User configurable per file, but 3 replicas stored by default

Client API Custom library and command line utilities



PERFORMANCE

BENCHMARKS



Performance Benchmarks
DFSIO

• Read: 66 MB/s
per node

• Write: 40 MB/s
per node

Production Cluster

• Read: 1.02 MB/s 
per node

• Write: 1.09 MB/s 
per node

Sort

• 1 TB sort

• 22.1 MB/s per 
node (RW)

• 1 PB sort

• 9.35 MB/s per 
node (RW)

Operation Throughput (Ops/s)

Open File for Read 126,100

Create File 5600

Rename File 8300

Delete File 20,700

DataNode Heartbeat 300,000

Blocks Report (blocks/s) 639,700



CONCLUSION



Conclusion

• The Hadoop Distributed File System is designed to 
store very large data sets reliably and to stream these 
datasets to user applications at high bandwidth

• The Hadoop MapReduce framework is designed to 
distribute storage and computation tasks across 
thousands of servers to enable resources to scale with 
demand while maintaining economical in size

• The HDFS architecture consists of a single NameNode, 
many DataNodes and the HDFS client

• Hadoop is an open source project that was inspired by 
Google’s proprietary Google File System and 
MapReduce framework



DISCUSSION


