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ABSTRACT
There has been a recent explosion in new Web-scale ser-
vices that have large-scale data storage requirements. Such
systems include social networking, business intelligence and
Web 2.0 services. There has been a similar explosion in
the number of systems designed to fulfil these requirements.
These newer systems support online transaction processing,
but generally do not support ACID semantics–often provid-
ing only create, read, update and delete (CRUD) operations
on a set of records indexed by key–in order to provide in-
creased availability and performance. These systems have
become known as NoSQL systems, and examples include
Cassandra, Voldemort, MongoDB, CouchDB, Redis, Riak,
Membase, Neo4j, HBase and others. Choosing a particular
system for a particular application is challenging and re-
quires understanding the design tradeoffs made by each sys-
tem as well as how they handle real-world workloads. In this
report, we address both of these issues by providing a qual-
itative and quantitative analysis of two representative sys-
tems: Cassandra and Voldemort. We explore the design and
implementation of each system and provide benchmark re-
sults using the industry standard benchmarking tool YCSB.
Most prior benchmarks focus exclusively on the performance
aspect of these systems. One of our main contributions is
benchmarking availability in addition to performance and
providing an analysis of the failover characteristics of each.
Our results shown that Cassandra outperforms Voldemort,
providing overall lower latency and higher throughput in the
same configuration with the same resources. We conclude
with a summary of our experiences and lessons learned.

1. INTRODUCTION
In the past several years, a new generation of applications
like Social networking, Web 2.0 and Business Intelligence
developed rapidly. These applications have to serve mil-
lions of users who expect the service to be always reliable
and available, and process terabytes and even petabytes of
data. This is achieved by distributed processing and is a
big challenge for relational database management systems
(RDBMSs). This new application environment requires:

• High concurrency for read and write operations

• An ability to efficiently store and access mass amounts
of data

• High scalability and high availability

The traditional relational database design has been found
to be inadequate for handling the huge amounts of unstruc-
tured data generated and analyzed by these applications.
A growing number of users have turned to a new class of
large scale data storage systems that relax the ACID guar-
antees of RDBMSs and instead provide only the basic func-
tions of persistent storage: Create, Read, Update and Delete
(CRUD). These systems have come to be known as NoSQL
systems. Compared to RDBMSs, NoSQL systems are de-
signed to handle huge amounts of data with high availabil-
ity, performance and scalability. NoSQL data stores have
the following key features:

• Horizontal scaling with commodity hardware

• Data distribution over many servers

• Concurrency model weaker than ACID

• Fault tolerance for node failure

• Schema free

Over 100 well-known NoSQL systems exist including Cas-
sandra, MongoDB, CouchDB, Redis, Riak, Membase, Neo4j
and HBase [13]. All of these systems offer overlapping fea-
tures but differ in their design and implementation. System
benchmarks are essential for evaluating different designs and
implementations and ensuring that these systems meet their
stated goals. System benchmarks also enable engineers and
system architects to select the most appropriate storage ap-
plication for a given project.

Benchmarking large scale distributed databases is challeng-
ing and an active area of research. The open-source Yahoo!
Cloud Serving Benchmark (YCSB) has become the industry
standard benchmarking tool for NoSQL systems. YCSB is
an extensible and generic framework for the evaluation of
key-value stores. It allows synthetic workloads to be gen-
erated that consist of a configurable distribution of CRUD
operations on a set of records. Despite the fact that NoSQL
systems have all been designed for high availability, existing
benchmark comparisons focus almost exclusively on latency
and throughput under blue-sky scenarios and do not evalu-
ate metrics for availability directly. In this project, we will
benchmark several NoSQL systems in the presence of simu-
lated network and node failures.



Our main objective is to provide a measure of the level of
fault tolerance provided by NoSQL systems and quantitative
comparison between them. To the best of our knowledge, a
thorough evaluation and comparison of the availability of
each of these systems has not been done. Evaluating the
availability of each system is challenging and not straight-
forward. To begin with, Brewer’s Theorem [6], also known
as the CAP Theorem, states that any distributed system
must make tradeoffs between consistency, availability and
performance. Only two of these metrics can be achieved at
any one time and at the expense of the third. Most of the
systems mentioned previously emphasize performance and
either consistency or availability at the expense of the other.
In order to ensure that we are making an apples-to-apples
comparison, we will evaluate two representative NoSQL sys-
tems, Cassandra and Voldemort. We chose to evaluate these
two systems because both are AP systems in the CAP par-
lance. In the first part of this report, we investigate how
our chosen NoSQL systems attempt to ensure availability of
data in the presence of node failures by surveying their de-
sign and implementation. In the second part of this report,
we perform an experimental investigation into the failover
characteristics of each in order to understand how these sys-
tems will perform in the real world.

2. DATABASE DESIGN AND IMPLEMEN-
TATION

We now investigate how each of Cassandra and Voldemort
have been designed for scalability, performance and high
availability.

2.1 Cassandra
Apache Cassandra was first developed at Facebook by Prash-
ant Malik and Avinash Lakshman, who is also one of the au-
thors of Amazon’s Dynamo [5]. Later in 2008 it was released
as an open source project. Cassandra meets the strict op-
erational requirements of performance, scalability and relia-
bility on Facebook’s platform and manages large amounts of
structured data storing within tens of thousands of commod-
ity servers across different data centres. The architecture of
Cassandra is a mixture of BigTable [2] and Dynamo. It is a
hybrid between a key-value and a column-oriented database.
Cassandra is designed as a completely decentralized system
similar to Dynamo’s design so there is no single point of fail-
ure as in the case of the name node in HDFS [12]. On the
other hand, the data model provides structured key-value
storage where columns are added only to specified keys, so
different keys can have different number of columns in any
column family which is similar to Google’s BigTable.

2.1.1 Partitioning
One of the key concerns of the design of Cassandra is to
be able to scale incrementally. Cassandra uses consistent
hashing [8] for data partitioning across the cluster with an
order preserving hash function. The idea of order preserving
is that if the keys are given in a certain order, the output
of the hash function of the keys will be in the same order.
Consistent hashing maps each node to a point on the edge
of a fixed circular space or “ring”. Each node is randomly
assigned a value to indicate its position on the ring. The
data item is assigned to the node by hashing its key to yield
its position on the ring and then moving clockwise to find

the first node with larger position than its position. As
described above, each node is storing the data items with
keys mapping to the position between it and its predecessor
node on the ring. Using consistent hashing enables that only
immediate neighbours are affected while the majority of the
system remains unaffected when adding or removing a node
in the system. Cassandra addresses the issue of non-uniform
load distribution by analyzing the load information on the
ring and moving lightly loaded nodes around to alleviate
heavily loaded ones.

2.1.2 Replication
Cassandra provides various options for data replication to
clients, such as Rack Unaware, Rack Aware and Datacen-
ter Aware. The client configures the replication factor N for
each instance, which means that each data item is replicated
at N nodes across the storage system. Rack Unaware policy
places the replicas on the N − 1 subsequent nodes of the
coordinator around the ring and simply ignores the network
topology. Rack Aware and Datacenter Aware strategies in-
volve using Zookeeper [7]. Rack Aware across datacenters
guarantees one replica will be stored in the datacenter dif-
ferent from the coordinator and the rest stored together in
a different datacenter but in the same racks. Datacenter
Aware policy will place M of the replicas in another data-
center and the remaining on nodes in other racks within the
same datacenter of the coordinator’s. To guarantee system
durability in the presence of datacenter failures, Cassandra
replicates each row across multiple data centers.

2.1.3 Fault tolerance
Running on tens of thousands of commodity servers across
datacenters around the world means failures are the norm
rather than exceptions. Disk, node or datacenter failures
happen due to hardware or network failure, power outages
or natural disasters. To detect node failure Cassandra uses
a Gossip based Accrual Failure Detector. Different from
traditional failure detectors using a binary model to present
the availability of a node, accrual failure detectors assign
to each node a numeric value representing a suspicion level.
In this way different actions can be triggered on each node
depending on its suspicion level. Each node’s metadata is
cached in memory and stored inside Zookeeper in a fault-
tolerant manner. A recovered node can get to know the
ranges it was responsible for on the ring from the records
in Zookeeper. When node failure occurs the dead node can
be removed by the user. Its responsible range is assigned
to other nodes and data is replicated there. To replace a
dead node, an administrator can simply remove it from the
ring and bootstrap a new node back into the cluster after
the removing process is complete. A new node can stream
the data from the nearest source node such that the new
node is not necessary to be in the same datacenter as the
primary replica for the range it is bootstrapping into, as
long as another replica is in the datacenter with the new
one. Before the process of bootstrapping finishes the new
node will not accept any reading request from the clients.

2.2 Voldemort
Voldemort was developed by LinkedIn and first released as
an Apache open source project in 2009. LinkedIn uses it as
a read-write store for LinkedIn Signal, News and Push No-
tifications and a read-only store supporting the features of



People You May Know and Jobs For You. Resembling Dy-
namo, Voldemort is designed as a decentralized key-value
store. The architecture of Voldemort consists of 6 layers
while each layer takes responsibility for performing one func-
tion such as TCP/IP network communication, serialization,
version reconciliation, inter-node routing, etc. The separa-
tion of layers enables different storage engines for various
purposes, customized conflict resolutions and serialization
support. The layers can be mixed and matched at runtime
to meet different needs.

2.2.1 Partitioning
Similar to Cassandra, the data partitioning in Voldemort is
also done via consistent hashing mechanism. The key space
is divided into partitions, and these partitions are randomly
mapped to nodes. Nodes are located from keys of the data
item to store.

2.2.2 Replication
Instead of supporting Rack Aware or Datacenter Aware repli-
cation Voldemort intends to achieve topology awareness ca-
pability for data replication by forming zones. A zone is
defined as a group of nodes close to each other in a network,
which can be, for example, all nodes in a rack or all nodes in
a datacenter. Users can define a per zone replication factor
which determines the number of replicas in each zone.

Each node in Voldemort receives hundreds of requests such
as PUT, GET, DELETE, and serves them with similar per-
formance. Voldemort does not use heartbeats or regular
pings–it simply sets an SLA for requests in order to detect
node failures. A node is considered down and gets banned
for a short period of time if it cannot meet the SLA. The load
handled by the unavailable node is evenly dispersed across
the remaining available nodes. The redundancy of storage
makes the system resilient enough to tolerate as many as
N − 1 failures without data loss. However, this causes an-
other problem, a crashed node may miss the updates during
its downtime. Voldemort uses Vector Clocks data version-
ing to solve this problem. A vector clock is a list of server-
version pairs which defines a partial order over values to
resolve the update conflict and allows nodes to detect stale
data. Voldemort uses hinted handoff to handle the update
for data items on unavailable nodes. When a client tries to
update a data item and finds the server storing the data is
down, it will pick up another node and write both the up-
dated value and the hint to the new node. When the failed
node recovers it can get the update according to the hint.

3. BENCHMARK AND EXPERIMENTAL
SETUP

In the first part of this report, we provided a qualitative
comparison of two representative large-scale data storage
applications: Cassandra and Voldemort. One of the main
reasons why enterprises are rapidly adopting NoSQL sys-
tems such as these are for their availability characteristics.
Enterprises want scalable data storage solutions that will
continue to serve their customers’ needs even when nodes are
failing, part of the network goes down, or datacenters are be-
ing destroyed by tornadoes. Yet few benchmarks have been
done to see how NoSQL systems live up to these promises
and expectations. In this part of the report, we provide

a quantitative comparison of these systems with a focus on
understanding their performance and behaviour when nodes
are failing. As we saw in the first part of this report, each
system must make tradeoffs when striving to provide consis-
tency, availability and performance. Different database sys-
tems are designed and optimized for different workloads and
take different approaches to meet these goals. For example,
Cassandra has be designed and optimized for writes using
on-disk data structures that can be maintained and updated
using sequential I/O. Other systems have been optimized
for random reads by using traditional buffer pool architec-
tures. Decisions about data partitioning, data placement,
replication and consistency all affect performance. NoSQL
systems generally sacrifice the complex query capabilities of
traditional RDBMSs in order to achieve higher performance
and scalability. Weaker transactional consistency guarantees
mean that these types of systems can scale both vertically
and horizontally. It is typical for NoSQL instances to span
large geographic areas, encompassing multiple physical dat-
acenters in order to provide the greatest level of availability
possible.

Both Cassandra and Voldemort attack the challenge of en-
suring high availability using similar means. The both use
a form of synchronous replication by default, use hinted-
handoff when a node is down, and use eventual consistency
to balance replication and availability. Synchronous replica-
tion ensures that all copies of a data item are up to date, but
incurs high latency on update. Also, when a failed node is
restored and rejoins the cluster, the process of updating any
stale data at that node introduces significant overhead into
the system. Quantifying what happens when a node fails
and rejoins a cluster is complex and challenging; however, it
is precisely this process that we are trying to measure. In the
rest of this report we will examine the Yahoo! Cloud Serving
Benchmark (YCSB) benchmarking tool that we selected to
use for benchmarking the availability of two representative
NoSQL systems; we will describe the benchmarks and work-
loads that we used to establish baseline performance metrics
for each system, including the parameters that we used for
the benchmark tool and to tune each database to our spe-
cific cluster configuration; and we will examine the failover
characteristics of each database and present our experiences
working with YCSB, Cassandra and Voldemort.

3.1 Yahoo! Cloud Serving Benchmark Frame-
work

The Yahoo! Cloud Serving Benchmark framework was de-
signed to allow accurate and repeatable evaluations of emerg-
ing cloud serving systems. The YCSB authors define “cloud
serving systems” as a new class of applications that address
cloud-based OLTP applications. Such serving systems pro-
vide online read and write access to data. Typically, an im-
patient human is waiting for a Web page to load and reads
and writes to the database are carried out as part of the
page creation process. Large-scale data storage applications
such as NoSQL systems fall squarely into this category.

One of the most important aspects of YCSB is that it fa-
cilitates apples-to-apples comparisons between different sys-
tems and it has quickly become an accepted industry stan-
dard for this purpose. Prior to YCSB, organizations that
were looking to deploy a NoSQL system into their infrastruc-



ture would have to rely on disparate benchmarks published
by the database developers using workloads that were tai-
lored to their particular systems or painstakingly develop an
in-house benchmark load generator that represents their ap-
plication’s requirements. Since YCSB was released as open
source, however, many benchmarks of NoSQL systems have
been published all using this framework, enabling accurate
and reliable comparisons between them. We also use YCSB
in our benchmark so that our results can be easily inter-
preted by the academic and industry communities.

As a benchmarking tool, YCSB enables us to gain insight
into the real-world performance of the tradeoffs between dif-
ferent systems and the workloads for which they are suited.
In order to fulfil its goal of becoming a standard benchmark-
ing framework, YCSB comes with a core set of standard
workloads that represent a variety of real-world applications.
These include read and write-heavy workloads, among oth-
ers. It should be noted that YCSB was designed primarily to
test the raw performance of database systems. In its current
form, it provides no direct support for benchmarking avail-
ability. Ideally, we would have liked to extend the framework
to include support, however, due to time constraints, we had
to work with only the features already implemented. We will
mention some of the limitations that we encountered in the
sections that follow.

3.2 Benchmarks
The results of our experimental evaluation of Cassandra and
Voldemort are presented in Section 5. In that section, we
first try to get an understanding of the baseline performance
characteristics of each system by running the YCSB core
workloads and generating latency versus throughput plots–
this is the primary use case that YCSB was designed for.
We then look at how failure and recovery events affect the
system as a whole. During these tests, we examine how
a node failure affects the latency of individual requests as
well as the overall throughput of the system. Latency is
an important metric that deserves our attention because,
as previously mentioned, these systems are typically used in
situations where there is an impatient human waiting for the
result on the other end. On any given hardware setup, there
is a tradeoff between latency and throughput: as through-
put increases, there is more contention for resources such as
the disk, network and CPU, causing the latency of individ-
ual requests increase as well. A system with better perfor-
mance will achieve the desired latency and throughput with
fewer servers. We generate latency versus throughput plots
by loading data into the database and then executing opera-
tions against that dataset while measuring their performance
at increasing rates of throughput until the database is sat-
urated and throughput stops increasing. The YCSB client
is used for both generating the workload and measuring the
performance of the workload operations. The parameters for
each workload are defined in properties files and the target
throughput is specified as a command line parameter.

After establishing baseline performance characteristics of
each system, we quantify what happens when a node fails.
To do this, we bring each system to a steady state of trans-
actional load and then after 1 minute kill one of the cluster
nodes without giving it any opportunity to clean up. After
4 minutes of downtime, we bring the killed node back online

and allow it to rejoin the cluster and monitor the system
for another 5 minutes, during which time the killed node
becomes fully operational again. Throughout the experi-
ment, we monitor the effects on latency and throughput as
well as the number of errors reported by the YCSB client,
which indicates if an end-user would perceive a service out-
age. Ideally there should be no impact on the latency and
throughput of the system and no errors should be reported.

The load generated for these tests was based on the YCSB
write-heavy workload and consisted of 50% read operations
and 50% write operations. We repeated each test using
a small dataset containing 1 million records and a large
dataset containing 50 million records at 50% and 100% of
each systems maximum throughput as measured during the
baseline performance measurements. At 50% of maximum
throughput, there is plenty of spare capacity on the remain-
ing nodes to take on the load of the failed node, while this
is not the case at 100% of the maximum throughput. The
latter case illustrates what would happen during a node fail-
ure at an enterprise that has not provisioned enough spare
capacity to handle a node failure.

To simulate node failures, we killed the database process
using the kill -9 system command. This mimics a node
crashing to due a software bug or hardware fault, such as
a power failure. Although this is one of the most common
failure scenarios, faults in real systems are often much more
complex. In the real world, disks, servers, racks, networks
and datacenters can all fail in unexpected ways. We had
hoped to test additional failure scenarios, such as network
partitioning by using tcpkill and bringing up firewalls be-
tween nodes, but we were unable to do so in the time avail-
able. Nevertheless, we were able to gain some valuable in-
sight into the failover characteristics of these representative
NoSQL systems which we present in the following sections.

4. EXPERIMENTAL SETUP
We performed the experimental evaluation of Cassandra and
Voldemort on identical clusters using six Amazon Web Ser-
vices instances. Our cluster consisted of four database servers
each running on an m1.xlarge EC2 spot instance with 4 vir-
tual CPUs with a total of 8 Elastic Compute Units (ECU)1and
8 GiB of RAM. Each database server also had four 420 GB
instance storage disks which are virtual disks that reside on
physical disks local to the server where the EC2 instance
is running. These were setup in a RAID 1+0 configuration
and mounted as the storage directory for each database. We
used one m3.2xlarge spot instance with 8 virtual CPUs with
a total of 26 ECUs and 30 GiB of RAM to host YCSB. EC2
spot instances have no persistent storage, so we setup an
additional m1.small on-demand instance as an NFS server.
The NFS server exported a persistent EBS volume that was
mounted at /home on all servers.

We had to experiment with many different versions of both
the databases and the YCSB benchmark tool in order to en-
sure everything was working as intended and establish the

1The amount of CPU time that is allotted to a particular vir-
tual machine instance is expressed in terms of ECUs. ECUs
are not defined in and of themselves, but rather provide a
relative measure of computing power between different in-
stance types.



parameters that we would use for our tests. (Some of the
problems that we encountered can be found in Section 7).
This involved setting up and tearing down the cluster many
times. For this reason, we automated the cluster setup and
configuration as much as possible. We Created Amazon
Machine Images (AMIs) for both the YCSB and database
servers so that we could deploy and configure a new cluster
in minutes2. These images contained startup scripts that
performed all necessary configuration, such as creating the
RAID array and mounting the NFS storage.

4.1 Software Versions, Modifications and Tun-
ing

The official YCSB github repository3 is out of date and the
documentation provided there is incomplete. Only Cassan-
dra 0.5, 0.6 and 0.7 are officially supported. A patch for
Cassandra 1.0.6 was submitted but not documented. In or-
der to benchmark the Cassandra 2.0.2, the latest version
available at the time of our benchmark, we used the version
of YCSB from Chrisjan Master’s github repository that in-
cludes a database interface layer using the Cassandra Query
Language4, the primary means for interacting with Cassan-
dra as of version 0.8.

The official YCSB github repository also supports only Volde-
mort 0.81. In order to benchmark the latest version of Volde-
mort, we used a version of YCSB from Carlos Tasada’s, one
of the Voldemort developers, github repository5. This ver-
sion of YCSB contained support for Voldemort up to version
0.96, and we found that when running it against Voldemort
1.3.0, the latest version at the time of our benchmark, YCSB
would crash and report ObsoleteVersionExcetpions when
run with more than one client thread and a database repli-
cation factor of 2. We contacted the Voldemort develop-
ers about this issue and they said that some ObsoleteVer-

sionExceptions are to be expected during normal opera-
tion. It means that two threads tried to update the same
value at the same time and that it is the client application’s
responsibility to deal with the conflict. We modified the
Voldemort database interface layer in this version of YCSB
to retry any conflicting update operations in a tight loop
until they succeed. Real world applications employ more so-
phisticated conflict resolution logic, such as intelligent merg-
ing of the conflicting values. Voldemort’s design is similar
to that of Amazon’s Dynamo, which is discussed at length
in [5].

We tuned each database to enable it to scale to match the re-
sources provided by the AWS m1.xlarge instances. The pri-
mary means of tuning Cassandra for a particular hardware
configuration is the cassandra-env.sh script in the conf di-
rectory of the Cassandra distribution. The script provides
two variables that it recommends adjusting for a production
system: MAX_HEAP_SIZE and HEAP_NEW_SIZE, which control
the overall maximum Java heap size and maximum size of

2This does not include the database load time, which was
on the order of one hour for our 50 million record dataset.
3https://github.com/brianfrankcooper/YCSB
4https://github.com/cmatser/YCSB/commit/
7c41e0e732660a40634873c9edfa20b5d14326c4
5https://github.com/ctasada/YCSB/commit/
5b4a408481d116ceb86b3ef28128961792df7145

the young generation heap, that is, the maximum size for
all objects that have not yet been through a round of the
garbage collection process. The larger the young generation
is, the longer application pauses due to garbage collection
will be, but if it is set too small, then garbage collection
will become more expensive overall. We set MAX_HEAP_SIZE

and HEAP_NEW_SIZE to “12G” and “800M” respectively. The
virtual machine has 15 GiB of RAM, so this configuration
leaves some room for operating system buffers.

The primary means of tuning Voldemort for a particular
hardware configuration is through the VOLD_OPTS environ-
ment variable. If not set, the startup script for Voldemort,
bin/voldemort-server.sh simply sets a maximum heap size
of 2 GiB. We set VOLD_OPTS to the following value based on
an example provided to us by the Voldemort developers:

VOLD_OPTS="VOLD_OPTS="-Xms4G -Xmx10G \

-XX:NewSize=1024M -XX:MaxNewSize=1024M \

-XX:+UseConcMarkSweepGC -XX:+UseParNewGC \

-XX:CMSInitiatingOccupancyFraction=70 \

-XX:SurvivorRatio=2 \

-XX:+AlwaysPreTouch

-XX:+UseCompressedOops \

-server -Dcom.sun.management.jmxremote"

The first two lines are the most important–they set the min-
imum heap size to 4 GiB, the maximum heap size to 10
GiB and the maximum size for the young generation heap
to 1024 MiB. Again, this leaves some room for operating
system buffers. The remainder of the options tune specific
aspects of the Java garbage collection process.

At the end of every run, YCSB aggregates measurements
and reports the average throughput, 95th and 99th percentile
latencies and either a histogram or timeseries of latencies in
a log format. We wrote python scripts to parse the log and
generate plots using gnuplot. The -s command line flag to
YCSB causes it to print status messages to standard error
with status messages that include the average throughput
for all operations over the last 10 seconds. We use these
status messages to plot the throughput values in our failover
experiments.

5. EXPERIMENTAL RESULTS
We now present the results of our experimental evaluation of
Cassandra and Voldemort. As mentioned previously, YCSB
comes with six predefined core workloads representing a vari-
ety of application types that are meant to facilitate apples-
to-apples comparisons between different systems. We ran
the core workloads against each database in order to perform
a baseline performance comparison at 19 different through-
put values for Cassandra and 14 different throughput val-
ues for Voldemort while measuring the latency of individual
requests. We then ran our node failure test as described
in Section 3.2 at both 50% of each database’s maximum
throughput as measured in the baseline comparison, and at
100% of each database’s maximum throughput while mea-
suring the overall throughput and latency of individual re-
quests. We repeated each of the core workload and node
failure tests on two datasets–a “small” dataset containing 1



million records and a “large” dataset containing 50 million
records. The small dataset had a raw size of 190 MiB for
the values only at a replication factor of two–this does not
include the size of the keys nor any extra bookkeeping infor-
mation that the database must maintain. The large dataset
has a raw size of 9.3 GiB plus the keys and bookkeeping
information. Each database has more than enough memory
to keep the small dataset in memory while the large dataset
is much more likely to have required hard disk access.

The YCSB core workloads were developed by examining a
variety of systems and applications to determine what work-
loads Web applications place on cloud data systems and to
explore different tradeoffs. Each workload consists of a mix
of insert, read, update and scan operations and used a va-
riety of data sizes and request distributions. They operate
on records that are identified by a primary key and contain
a number of fields. Each key has the form “user1234232”
and field values are random sequences of ASCII characters.
Insert operations insert a new record into the database; read
operations read either one randomly chosen field or all fields
in a record; update operations replace the value in one filed
of a record; and scan operations read a random number of
records in order starting at a randomly chosen key. The core
workloads are:

Workload A: Update heavy workload This workload con-
sists of 50% read operations and 50% update opera-
tions. Example: session store recording recent user
actions.

Workload B: Read mostly workload This workload con-
sists of 95% reads and 5% updates. Example: photo
tagging.

Workload C: Read only workload This workload con-
sists of 100% read operations. Example: user profile
cache.

Workload D: Read latest workload This workload con-
sists of 95% read and 5% insert operations. The most
recently inserted records are the most popular. Exam-
ple: user status updates.

Workload E: Short ranges workload This workload con-
sist of 5% insert and 95% scan operations–new records
are inserted and short ranges of records are queried
using scan operations. Example: retrieving threaded
conversations.

Workload F: Read-modify-write workload This work-
load consists of 50% read and 50% read-modify-write
operations implemented as sequential read and update
operations on the same key. Example: user database.

Each of the workloads uses a Zipfian request distribution, ex-
cept for Workload D, which uses a read-latest distribution.
In the Zipfian distribution some records are extremely pop-
ular while most records are unpopular. Items retain their
popularity even as new records are inserted. This distri-
bution closely models many Web workloads, where, for ex-
ample, a particular user might be extremely popular and
have many profile page views even though they joined the
network long ago.

We ran the workloads in the order recommended by the
YCSB wiki to keep the database size consistent. This con-
sisted of loading the database, running Workloads A, B, C,
F, D in that order, each for a variety of throughputs, deleting
and reloading the database, and then running Workload E
for a variety of throughputs. Loading the small dataset into
the four node cluster of Cassandra and Voldemort each took
on the order of 1 - 2 minutes, while loading the large dataset
took about one hour. For Cassandra, we ran each workload
for 100,000 operations and for Voldemort, for 20,000 opera-
tions due to its lower maximum throughput. Each workload
took a few minutes to run at low throughput values and on
the order of 10s of seconds at high throughput values.

We defined each record to have 10 fields of 10 bytes each
and ran each test with 64 YCSB load generator threads.
The server hosting the YCSB load generator was monitored
using htop to ensure that the CPU and memory on the
server were not a bottleneck. Each database was configured
with a replication factor of 2. The keyspace for Cassandra
was created with the CQL statement

CREATE KEYSPACE ycsb WITH REPLICATION =

{’class’: ’SimpleStrategy’,

’replication_factor’: 2};

The data store for Voldemort was configured using the stores.xml
file provided with test_config1 in the Voldemort distribu-
tion. In particular, this file sets a replication factor of 2 and
requires 2 nodes to participate in the reads and writes of
each data item.

The on-disk size of the 1 million record dataset for Cassandra
was between 271 MiB and 306 MiB and between 6.4 GiB and
6.9 GiB for the 50 million record dataset. For Voldemort,
the on-disk size of the 1 million record dataset was 243 MiB
for each node and 9.8 GiB for the 50 million record dataset.
It is interesting to note that the on-disk size for the dataset
in Cassandra increased by a factor of 23 for the 50 million
record dataset and by a factor of 41 for Voldemort. One
explanation for this could be that Cassandra has a larger
constant overhead for each dataset; however, the on disk size
of the 1 million and 50 million record datasets for Voldemort
are smaller and larger than the on-disk sizes for Cassandra
respectively, which makes this explanation unlikely.

5.1 Baseline Performance Comparison
The latency versus throughput results for Workloads A - F
for Cassandra using the 1 million record dataset are shown
in Figure 1. The results for the 50 million record dataset
have been omitted due to space constraints but are very
similar. The shape of the latency versus throughput curves
for the 50 million record datasets mirror that of the 1 million
record dataset, except they have a slightly lower maximum
throughput, approximately 8,000 operations per second ver-
sus 9,000 operations per second, and approximately 500 mi-
croseconds higher latency per operation at the maximum
throughput. From these plots, it is clear that the latency
for individual operations increases as throughput increases.
This phenomenon is due to resource contention within the
database server as throughput increases. For Workloads A,
C and D, the latency of update, insert and read operations
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Figure 1: Workload A-E results for Cassandra 2.0.2 using 1 million records with replication factor 2 in a four node cluster.

increases almost linearly with increasing throughput with
latency for all operations increasing at the same rate. The
latencies for Workload B, the read mostly workload, increase
steeply near the middle of the throughput range while it in-
creases less steeply at low and high throughput values. The
latency of scan operations in Workload E appear to increase
almost exponentially as throughput increases. This is due
to the large amounts of contention caused by the scan oper-
ations, which are more resource intensive than simple reads
and writes. This contention also significantly decreases the
maximum throughput possible for this workload. Laten-
cies for Workload F also increase linearly with increasing
throughput, but the maximum throughput is less that Work-
loads A - D.

The latency versus throughput results for Voldemort for
Workloads A - D and F for the 1 million record dataset are
shown in Figure 2. Workload E was not run against Volde-
mort because Voldemort does not support scan operations.
Again, the results for the 50 million record are omitted due
to space constraints. The maximum throughput for each
workload in the 50 million record dataset was approximately
700 operations per second less and again the latency values
vary widely. The most striking difference between these re-
sults and the results for Cassandra is the lack of a clear re-
lationship between the latency of individual operations and
throughput. Workloads A, D, and F show that the laten-
cies of update operations vary greatly and are much higher
than the latency for read operations. This phenomenon is
likely due to the modifications that we made to the Volde-
mort database layer in YCSB in order to get the benchmark
to run: it simply retries conflicting update operations in a
tight loop until they succeed. Since these workloads use a
Zipfian distribution, there are likely a lot of conflicting up-
dates to popular keys which causes some update operations
to livelock for short periods. More sophisticated conflict res-
olution strategies would likely reduce the variation in latency

for update operations and produce more clear relationships
between latency and throughput. Nevertheless, these results
highlight a potential issue that application developers need
to be aware of. It is interesting to note that the latency val-
ues for insert operations in Workload D also exhibit a large
variation although our modified update operation is not used
in this case. Workload C does show a clear relationship be-
tween latency and throughput, however. Latency increases
slowly with increasing throughput until about 1750 opera-
tions per second, after which point it increases sharply. This
likely represents a tipping point at which resource contention
within the database server causes latency to go up.

We also ran each workload against Voldemort using a repli-
cation factor of 1 and found that the problem of update
operation conflicts to be much less of an issue. The latency
versus throughput plot for Workload A is shown in Figure 3
and shows a clear relationship between latency and through-
put. The latencies of both update and read operations show
the same pattern as read operations in Workload C above.
Workloads B - F show similar patterns in latency values but
have been omitted due to space constraints.

The maximum throughput for each workload for Cassan-
dra and Voldemort is shown in Figure 4. This figure shows
that the performance of each database was approximately
the same when loading each database; however, Cassandra
was able to achieve significantly greater throughput for all
workloads under identical conditions as Voldemort. Cassan-
dra also had the lowest average latency for all workloads.
Interestingly, the throughput for both Cassandra and Volde-
mort increased when loading the 50 million record dataset
and the throughput for Voldemort for Workload C increased
slightly for the 50 million record dataset while the through-
put dropped for Cassandra for all workloads. Nevertheless,
Cassandra is the overall winner in terms of latency and
throughput. Cassandra was able to achieve higher through-
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Figure 2: Workload A-D and F results for Voldemort 1.3.0 using 1 million records with replication factor 2 in a four node
cluster.
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put and lower latency with the same resources as Voldemort.

5.2 Failover Performance and Characteristics
Now that we have benchmarked the baseline performance of
each database, we examine their failover performance and
characteristics. As described in Section 3.2, each four node
database cluster is brought to a steady state of transactional
load and then one database server is killed using the kill

-9 system command while running a workload consisting of
50% read operations and 50% write operations. After four
minutes of down time, we bring the node back up and allow
it to rejoin the cluster while continuing to measure the la-
tency and throughput for another five minutes. The results
of these experiments for both Cassandra and Voldemort are
shown in Figure 5 for the 1 million record dataset and Fig-
ure 6 for the 50 million record dataset at both 50% and 100%
of each databases maximum throughput. The plots for each
dataset exhibit similar characteristics; however, we will fo-
cus our discussion on the results for the 1 million record
dataset. In the plots, the vertical lines at 60 seconds and
300 seconds mark the points at which the database server
was killed and then brought back up respectively.

Trying to quantify what happens during failover is com-
plex; however, we can make a number of observations from
these plots. For both databases there is a large spike in
latency values at the instant the node goes down. This
could be due to the fact that the client must restart any
transactions that were in progress at the instant that the
node went down. While the node remains down, Cassan-
dra shows increased latency for all operations. It is very
evident that rejoining a node to a Cassandra cluster is an
expensive operation–much more expensive than when the
node goes down. This is due to the fact that the node must
update any stale data that it has, which requires resources
from the remaining nodes, before the downed node can re-
join the cluster. The throughput values also exhibit some
interesting trends: when the downed Cassandra node starts
to update its stale data at about 325 seconds in each test,
there is a sharp drop in the throughput. It appears as if all
nodes momentarily stop serving requests when the downed
node comes back online. As can be clearly seen in the test
at 50% of maximum throughput, it takes almost 200 sec-
onds for the system to recover from one node being down
for 240 seconds. Except for the drop in throughput when the
downed node rejoins the cluster, the overall throughput re-
mains unaffected when the node goes down and comes back
up in the 50% of maximum throughput test. However, in
the 100% of maximum throughput test, the throughput de-
creases both when the node goes down and comes back up,
and does not fully recover in either case. According to [9],
this is due to the reconnect settings in the Cassandra YCSB
database layer, which has not been designed to handle node
failures, and is not representative of the database system
performance. The measured latencies also do not return to
their pre-node-failure values and the database layer is likely
the cause here well. During the 1 million record dataset
test at 50% of maximum throughput, 4,311 operations out
of 2.4 million, representing 0.2% of requests, failed. For the
remaining tests, between 0.05% and 0.1% of requests failed.

It appears that Voldemort has very different failover char-
acteristics from Cassandra; however, these results may be

due to the nature of our test. We discovered during our
analysis that unlike the Cassandra YCSB database interface
layer which reported failed requests to standard output, the
Voldemort database interface layer silently ignored failed re-
quests. The configuration for the Voldemort datastore that
we used (based on the sample configuration provided with
Voldemort) required reads and writes to succeed at two lo-
cations for a request to be successful. When a read or write
was required at the down node, the request would fail, which
means approximately 23.5% of requests failed without us
knowing. Since these failed requests did not take as long as
long to execute as successful requests, we observe a decrease
in overall latency when a node goes down. Also, since these
requests fail, the data at the down node never becomes stale,
and there is almost no recovery to be done when the node
comes back up.

6. RELATED WORK
Benchmarking large scale distributed databases is challeng-
ing and an active area of research. YCSB was introduced in
a paper from Yahoo! in which they presented benchmark
results for four widely-used systems: Apache Cassandra,
Apache HBase, Yahoo!’s PNUTS and a sharded MySQL im-
plementation [3]. Many other industry and academic groups
have used YCSB to compare the performance of NoSQL sys-
tems including Aerospike, Cassandra, Couchbase, HBase,
MongoDB and Riak [1, 4, 9]. An influential paper presented
at the 2012 VLDB conference by researchers from the Uni-
versity of Toronto provided a relatively recent comparison
of the throughput of Cassandra, HBase, Voldemort, Redis,
VoltDB, and a MySQL cluster, which were chosen as a rep-
resentative set covering a broad area of modern storage ar-
chitectures [11]. This study found that Voldemort had the
lowest latency while Cassandra had the highest throughput.
We also found Cassandra to have the highest throughput,
but found Voldemort to have the highest latency. This dis-
crepancy could be due to our modifications to the Voldemort
database interface layer in YCSB, or our configuration which
required a replication factor of 2. Despite the fact that these
systems have all been designed for high availability, existing
benchmark comparisons focus almost exclusively on latency
and throughput under blue-sky scenarios and do not eval-
uate metrics for availability directly. However, one recent
industry white paper [10] does investigate the failover char-
acteristics of Aerospike, Cassandra, Couchbase and Mon-
goDB using the same methodology as us. That is, they kill
one node in a cluster using kill -9 and bring it up again
while continuing to monitor throughput and latency, and ob-
served the same effects that we saw for Cassandra. Unlike
our work, they do not give a qualitative comparison of the
systems they evaluate and they do not consider Voldemort.

7. EXPERIENCES AND LESSONS
LEARNED

We encountered a number of challenges when striving to
meet our goal of providing a meaningful benchmark of failover
characteristics of large scale data storage applications. First
of all, the documentation for YCSB was incomplete and out
of date. This led us to spend a significant amount of time
trying different versions of Cassandra with different versions
of the Cassandra database interface layer to see which com-
binations worked and which did not. Before discovering the
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Figure 5: Throughput and latency for the update heavy workload for Cassandra and Voldemort with a single node failure in
a four node cluster and a database size of 1 million records. The vertical lines at 30 seconds and 300 seconds mark the point
at which the node was killed and brought back online respectively.



1

10

100

0 100 200 300 400 500 600
2600

2625

2650

2675

2700

2725

2750

2775

2800

2825

2850

L
a
te

n
cy

(m
s)

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Time (s)

Update heavy workload with one node failure at 50% of maximum throughput for Cassandra 2.0.2

UPDATE
READ
TPUT

1

10

100

0 100 200 300 400 500 600
3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

L
a
te

n
cy

(m
s)

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Time (s)

Update heavy workload with one node failure at maximum throughput for Cassandra 2.0.2

UPDATE
READ
TPUT

0.1

1

10

100

1000

0 100 200 300 400 500 600
550

600

650

700

750

800

850

900

950

L
a
te

n
cy

(m
s)

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Time (s)

Update heavy workload with one node failure at 50% of maximum throughput for Voldemort 1.3.0

UPDATE
READ
TPUT

0.1

1

10

100

1000

0 100 200 300 400 500 600
750

1000

1250

1500

1750

2000

2250

2500

L
a
te

n
cy

(m
s)

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Time (s)

Update heavy workload with one node failure at maximum throughput for Voldemort 1.3.0

UPDATE
READ
TPUT

Figure 6: Throughput and latency for the update heavy workload for Cassandra and Voldemort with a single node failure in
a four node cluster and a database size of 50 million records. The vertical lines at 30 seconds and 300 seconds mark the point
at which the node was killed and brought back online respectively. The data in the second plot ends at approximately 375
seconds because the test finished early for the reason discussed in Section 7.



version of YCSB that was used in this report from a post
in the YCSB github issue tracker, we experimented with
Cassandra versions 1.2.1, 1.1.12, 1.1.7, 1.0.6 and 0.7.9. We
had a similar problem with Voldemort; however, it did not
take us long to find the version of YCSB updated for Volde-
mort 0.96 (we found it through a post in the issue tracker
for Voldemort). This version of YCSB more-or-less worked
with Voldemort 1.3.0 in our setup, but we still had to patch
it to handle conflicting update operations.

The fact that YCSB is not designed to benchmark avail-
ability caused a number of problems. For example, YCSB
does not allow a time duration for a test to be specified–
the duration of a test may be specified only in terms of
the number of operations to be performed. Our goal was
to run each benchmark for 10 minutes; however, we found
that when running the database at maximum throughput,
the throughput values could be unpredictable, resulting in
a test that ran significantly longer or shorter than intended.
If the test ran shorter, we would have to run the test again.
If the test ran longer, there was no way to cancel it early
or else YCSB would not print latency statistics. Similarly,
the throughput values were output only as status messages
indicating the average throughput for all operations over the
last 10 seconds. On the other hand, latency values would be
recorded at specified intervals as small as 1 millisecond. The
Cassandra and Voldemort database interface layers were also
not designed to benchmark availability and this caused the
problems that were discussed in Section 5.2.

We had no prior experience using AWS, therefore it took
us longer than expected to get our cluster up and running.
Many features of AWS are not intuitive for a first-time user,
so it took us a while to understand how to work with spot
instances that have no persistent storage and how to use
snapshots and AMIs effectively. However, after learning how
to use AWS effectively, we saw that its design to support
scalability and availability has a lot in common with the
design of the storage applications that we were studying.

8. CONCLUSION
We surveyed two representative NoSQL systems, Cassan-
dra and Voldemort, providing a qualitative and quantitative
analysis of each. In the qualitative analysis, we explored the
design tradeoffs and implementation of each system. In the
quantitative analysis, we first provided a baseline perfor-
mance comparison of each system using a set of standard
workloads provided with YCSB. These workloads are rep-
resentative of many Web application workloads and are de-
signed to facilitate comparison across different systems and
even different benchmarks. We found Cassandra to be the
clearly superior, providing the lowest latency and highest
throughput across all workloads. After providing a baseline
performance comparison, we explored the failover charac-
teristics of each system by monitoring the throughput and
latency of individual requests while a node failed and came
back online. Although we encountered some difficulties, we
were able to show that Cassandra was able to continue pro-
cessing transactions through node failure and recovery, and
characterize the process. We found that transaction latency
increased slightly while the node was down and that recovery
was an expensive process–more expensive that node failure–
and latency increased significantly while the recovering node

updated stale data. We believe that our work provides a
solid basis for further investigation into failover characteris-
tics of NoSQL systems.
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