
BENCHMARKING AVAILABILITY
AND FAILOVER PERFORMANCE OF

LARGE-SCALE DATA STORAGE
APPLICATIONS

Wei Sun and Alexander Pokluda

December 2, 2013

Outline

• Goal and Motivation

• Overview of Cassandra and Voldemort Design

• Benchmark Setup and Methodology

• Preliminary Results and Status Report

• Conclusion

 Goal and Motivation

• Goal: To understand failover characteristics of large-
scale data storage applications

• Few benchmarks of failover characteristics have been
done

• We have chosen to study the following:
– Cassandra
– Voldemort
– HBase (if time permits)

• Cassandra and Voldemort were chosen because both
emphasize availability and performance

• HBase, which emphasizes consistency and
performance, was chosen to cover a wider range of
architectures

OVERVIEW OF CASSANDRA
AND VOLDEMORT DESIGN

Cassandra
• Architecture

– Mixture of Dynamo and BigTable

• Consistent hashing
– Order preserving hash function

• Various replication options
– Rack unaware, rack aware, datacenter shard

• Fault tolerance
– Accrual Failure Detection

• Node Failure
– Down and up: Zookeeper

– Down entirely: replacement

 Voldemort

Voldemort

• Consistent hashing

• Zone aware replication
– User-defined per zone replication factor

• Consistency
– Read-repair & quorum

– Vector-clock versioning

• Node failure
– hinted handoff

Cassandra vs. Voldemort
Cassandra Voldemort

Data Model column database
multi dimensional

key-value datastore
hash table

Replication synchronous/asynchronous
chosen by application: Rack unaware,
rack aware, across datacenter

Zone aware replication

Partitioning consistent hashing
(order preserving hash function)

consistent hashing

Consistency
Model

tunable
all the way from "writes never fail" to
"block for all replicas to be readable",
with the quorum level in the middle

tunable
Quorum, read-repair, hinted handoff

Data Storage Disk Pluggable Storage Engines: BDB-JE,
MySQL, Read-Only

Developed by Facebook
in Java

by LinkedIn
in Java

BENCHMARK SETUP
AND METHODOLOGY

Methodology

• Using Yahoo! Cloud Serving Systems Benchmark (YCSB) for
load generation and reporting
– Extensible and generic framework for evaluation of key-value

stores that has become an industry standard
– Can generate synthetic workloads that consist of a

configurable distribution of CRUD operations

• Measure latency for a variety of throughputs
• Measure throughput vs time and error count for blue-sky

and failure scenarios
• Node failures simulated using kill -9

• Network failures simulated using tcpkill and firewalls
• Nodes run on AWS

Cluster Configuration

• Experimental setup consists of 5 nodes on
AWS

• Database Servers
– 4x m1.xlarge Spot Instances

• 4 vCPU (8 ECU), 15 GiB RAM
• 4x420 GB disk as RAID 1+0

• YCSB Load Generator
– 1x m3.2xlarge Spot Instance

• 8 vCPU (26 ECU), 30 GiB RAM

• Network throughput between database
and YCSB servers consistently > 960 Mbit/s

• NFS Server
– 1x m1.small On-Demand Instance

• 1 vCPU (1 ECU), 1.7 GiB RAM
• 10 GB persistent EBS volume mounted at
/home on all servers

Workloads and Parameters

• Workload A: Update heavy workload
– 50% Reads, 50% Writes

– Example: session store recording recent actions

• Workload B: Read mostly workload
– 95% Reads, 5% Writes

– Example: photo tagging

• Workload C: Read only
– 100% Read

– Example: user profile cache

Workloads and Parameters

• Workload D: Read latest workload
– New records inserted, reads mostly on latest inserted
– Example: User status updates

• Workload E: Short ranges
– Short ranges queried
– Example: Threaded conversations (clustered by

thread ID)

• Workload F: Read-modify-write
– Records read, modified and written back
– Example: User database

PRELIMINARY RESULTS
AND STATUS REPORT

Cassandra: Latency vs Throughput

• Cassandra 2.0.2

• No failures

Cassandra: Throughput vs Time

• Left: No failures

• Right: 1 of 4 nodes killed at 20000 ms

Challenges

• The YCSB github repository is out of date and
the documentation is incomplete
– Only Cassandra 0.5, 0.6, and 0.7 are supported
– A patch was submitted for Cassandra 1.0.6 but not

documented
– Only Voldemort 0.81 is supported (but this is not

documented)
– After a long search I found someone's personal fork

of YCSB with support for Cassandra 2.0 (CQL) and an
updated patch for Voldemort 0.96 in one of the
Voldemort contributor’s github repository

Status Report

• Need to re-run Cassandra tests with correct
threadcount parameter and fork of YCSB that supports
Cassandra 2.0

• ObsoleteVersionExceptions are preventing Voldemort
benchmark from progressing
– Contacted Voldemort developers through issue tracker:

they said some ObsoleteVersionExceptions are normal
– I’m working on patching the code based on stotch’s

recommendations

• Need to test failure scenarios
• Need to run Hbase tests (time permitting)

CONCLUSION

Summary

• Our goal is to understand failover characteristics
of large-scale data storage applications

• Few benchmarks of failover characteristics have
been done

• Presented an overview of the design of
Cassandra and Voldemort

• Presented preliminary benchmark results using
YCSB on a small cluster of nodes running in AWS

Lessons Learned

• Learned how to use AWS EC2 and VPC
– Learned differences between EBS, Instance Store and

S3 and how to create AMIs
– Learned about instance types, placement groups and

on-demand vs spot instances
– Learned about Regions and availability zones and

how AWS is designed
• Designed to isolate failures

• Learned about the design and implementation
and how to install, configure and tune several
NoSQL Systems

QUESTIONS?

