Scalability Analysis of the Hierarchical Architecture for Distributed Virtual Environments

Michael Kwok Johnny W. Wong

Presentation by Alexander Pokluda

Cheriton School of Computer Science, University of Waterloo, Canada

IEEE Transactions on Parallel and Distributed Systems 2008

Introduction	Queueing Theory Analysis: Analytic Results	Consistency	Summary
Outline			

Introduction

- Hierarchical Architecture
- Model of a Distributed Virtual Environment

Queueing Theory Analysis: Analytic Results

- Analysis of Arrival Rates
- Results and Discussion

3 Consistency

- Consistent and Inconsistent States
- Virtual Vision Domain
- Performance Evaluation

Introduction

Queueing Theory Analysis: Analytic Results

Consistency

Summary

What is a Distributed Virtual Environment?

Definition

A Distributed Virtual Environment is a shared virtual environment where users at their workstations interact with each other over a network

Design and Performance of a Virtual Environment Infrastructure

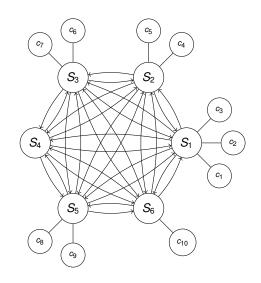
- In terms of scalability, a promising system architecture is a two-level hierarchical architecture
- Although the two-level hierarchical architecture is believed to have good properties with respect to scalability, not much is known about its performance characteristics

Contributions

Queueing theory is used to develop a performance model for the two-level architecture and obtain analytic results on the workload experienced by each server

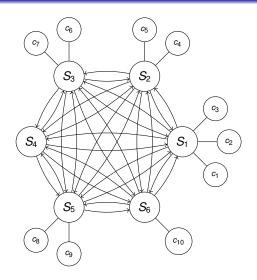
The authors also investigate the issue of consistency and develop a novel technique to achieve weak consistency among the copies of the virtual environments at the various servers

Two-Level Hie	rarchical Architecture		
Hierarchical Architecture			
Introduction	Queueing Theory Analysis: Analytic Results	Consistency 0000000	Summary


At the lower level

 users assigned to servers based on load-balancing consideration

At the higher level


servers

 communicate
 among themselves
 to ensure that
 updates are sent to
 affected users and
 that their VEs are as
 consistent as
 possible

Undate Messa	ge Flow		
Hierarchical Architecture			
Introduction ○●○○	Queueing Theory Analysis: Analytic Results	Consistency	Summary

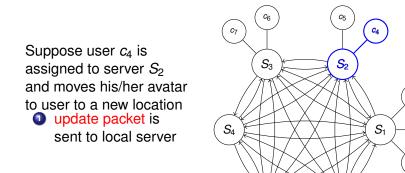
Suppose user c_4 is assigned to server S_2 and moves his/her avatar to user to a new location

Update Messa	de Flow		
Hierarchical Architecture			
Introduction ooo	Queueing Theory Analysis: Analytic Results	Consistency	Summary

 S_5

Cg

C₈

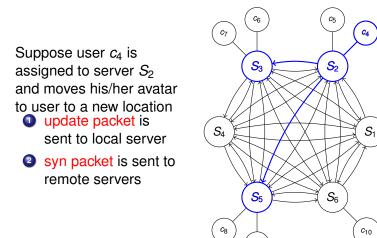

Сз

C1

 S_6

 c_{10}

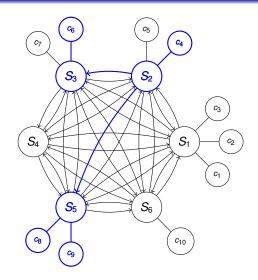
*c*₂



Update Messa	de Flow		
Hierarchical Architecture			
Introduction ooo	Queueing Theory Analysis: Analytic Results	Consistency	Summary

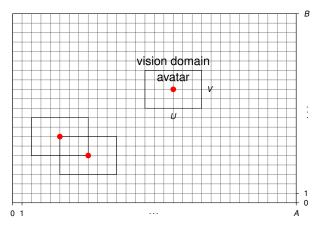
c₃

C1


*c*₂

Introduction	Queueing Theory Analysis: Analytic Results	Consistency 0000000	Summary
Hierarchical Architecture	ae Flow		

Suppose user *c*₄ is assigned to server *S*₂ and moves his/her avatar to user to a new location update packet is sent to local server


- syn packet is sent to remote servers
- update packet is sent to remote users

Introduction	Queueing Theory Analysis: Analytic Results	Consistency 0000000	Summary
Model of a Distributed Vir	tual Environment		
Avatars and	Vision Domains		

Our VE is modelled as a 2D unit square grid

- Avatars can only be located at a grid intersection (x, y)
- Each avatar is at the centre of its vision domain

Introduction ○○○●	Queueing Theory Analysis: Analytic Results	Consistency	Summary	
Model of a Distributed Virtual Environment				
User Moven	nent			

When the user makes a move, she can move up, down left or right according to a **probability distribution**

Assumptions

- Movement of each user is modelled by a Markovian chain
- Probability distribution is the same for all users
- Time until a user makes their next move is exponentially distributed and user moves are mutually independent

Let $q_{a,b;c,d}$ be the probability that a user moves from (a, b) to (c, d) in one step. It follows from the above assumptions that

$$P_{a,b} = \sum_{c=0}^{A} \sum_{d=0}^{B} p_{c,d} q_{c,d;a,b}$$
 for $a = 0, 1, ..., A; b = 0, 1, ..., B$

where $\sum_{a=0}^{A} \sum_{b=0}^{B} p_{a,b} = 1$

Introduction	Queueing Theory Analysis: Analytic Results	Consistency	Summary
	• 0 0000		

Analysis of Arrival Rates

Total Arrival Rate of Update and Syn Packets to a Server

- Let N_i be the number of logged on users at S_i , i = 1, 2, ..., K
- Let γ_i be the arrival rate of update packets to S_i
- Let $\eta_{k,i}$ be the arrival rate of syn packets from S_k to S_i , $k \neq i$

Arrival Rate of Update Packets

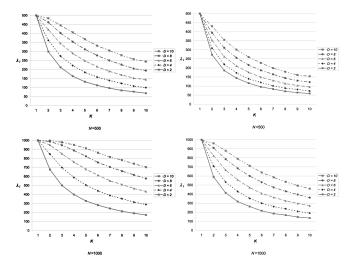
Let ϕ be the rate at which a user makes a move. The combined arrival rate of update packets to S_i is given by

 $\gamma_i = N_i \phi.$

Introduction	Queueing Theory Analysis: Analytic Results	Consistency 0000000	Summary
Analysis of Arrival Rates			
Arrival Rate	of Syn Packets		

- Consider a *tagged* user at S_k
- Let the probability that after the tagged user has made a move there are one or more users logged on to S_i who are within the tagged user's vision domain be g_{k,i}
- 3 Let $\xi_{k,i}(n)$ be the probability that exactly *n* users at S_i are within the tagged user's vision domain

$$\xi_{k,i}(n) = \sum_{a=0}^{A} \sum_{b=0}^{B} \left[\binom{N_i}{n} (h(a,b))^n (1-h(a,b))^{N_i-n} \right] p_{a,b}$$

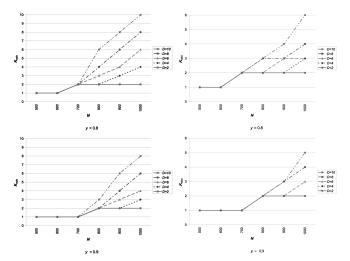

where $h(a, b) = \sum_{x=x'}^{x^*} \sum_{y=y'}^{y^*} p_{x,y}$

Then g_{k,i} = 1 − ξ_{k,i}(0) and η_{k,i} = g_{k,i}N_kφ for N_k users at S_k
Summing over all other servers, η_i = Σ^K_{k=1,k≠i} η_{k,i}
The total arrival rate to S_i is the sum of γ_i and η_i, λ_i = γ_i + η_i.

Introduction	Queueing Theory Analysis: Analytic Results	Consistency	Summary
	00000		

Results and Discussion

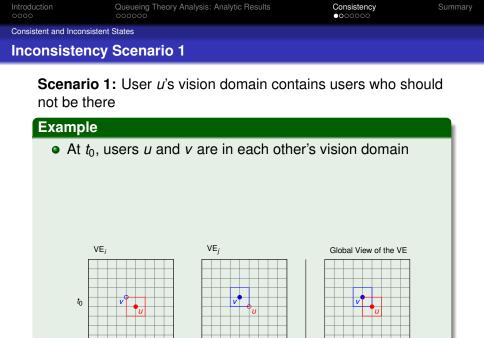
Total Arrival Rate Results



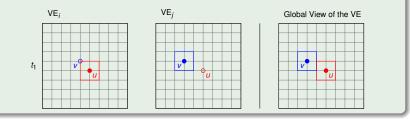
 λ_i , total arrival rate at S_i , for a VE with size 100×100 and 150×150 and various *D*, where *D* is the width and height of the vision domain

Introduction	Queueing Theory Analysis: Analytic Results	Consistency	Summary
Results and Discussion			
Total Arrival F	Rate Discussion		

- In all cases, we observe a reduction in the total arrival rate λ_i when more servers are used
- A larger vision domain leads to a higher total arrival rate
- The fact that λ_i is a decreasing function of K indicates that the two-level architecture has good properties with respect to scalability

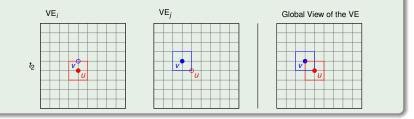


 K_{min} , minimum number of servers required to support *N* users while $\lambda_i/\mu_i \leq y$ for VE with size 100 × 100 and 150 × 150


Queueing Theory Analysis: Analytic Results ○○○○○●	Consistency	Summary
scussion		
	00 000 ●	oc ooo oo

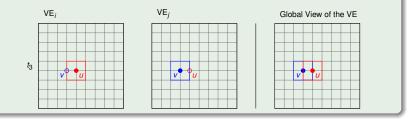
- K_{min} increases almost linearly with N
 - This is a good property with respect to scalability
- Rate of increase of *K_{min}* is affective by the size of the vision domain *D*
 - A large D has a negative impact on scalability
- A larger VE means a lower density of avatars and smaller rate of syn packets generated

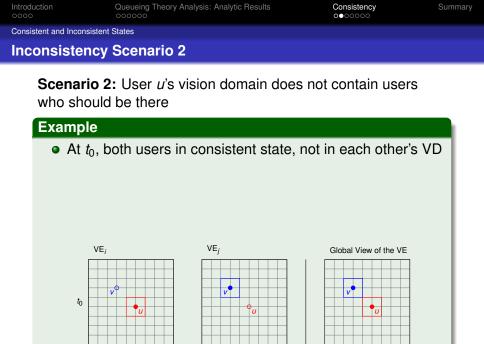
Introduction	Queueing Theory Analysis: Analytic Results	Consistency ●○○○○○	Summary
Consistent and Inco	nsistent States		
Inconsiste	ncy Scenario 1		
not be		ains users who s	hould
Examp	le		


- At t₀, users u and v are in each other's vision domain
- At t₁, user v at S_i moves left by one step (no syn sent)

Introduction	Queueing Theory Analysis: Analytic Results	Consistency •••••	Summary			
Consistent and Inconsister	Consistent and Inconsistent States					
Inconsistency	v Scenario 1					

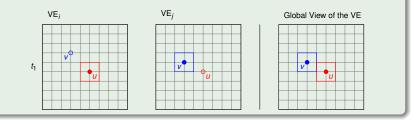
Scenario 1: User *u*'s vision domain contains users who should not be there


- At t₀, users u and v are in each other's vision domain
- At t₁, user v at S_i moves left by one step (no syn sent)
- At t₂, user u at S_i moves left by one step (syn packet sent)

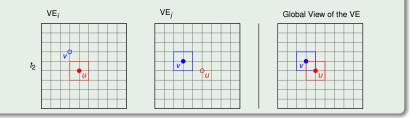


Introduction	Queueing Theory Analysis: Analytic Results	Consistency ●oooooo	Summary		
Consistent and Inconsistent States					
Inconsistency Scenario 1					

Scenario 1: User *u*'s vision domain contains users who should not be there

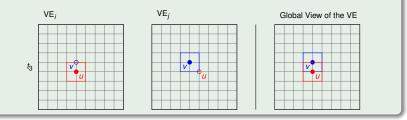

- At t₀, users u and v are in each other's vision domain
- At t₁, user v at S_i moves left by one step (no syn sent)
- At t₂, user u at S_i moves left by one step (syn packet sent)
- At t₃, v moves down by one step (consistency restored)

Introduction	Queueing Theory Analysis: Analytic Results	Consistency oooooo	Summary
Consistent and Inconsisten	t States		
Inconsistency	Scenario 2		
Scenario 2 who should	2: User u's vision domain does no d be there	t contain users	


- At t₀, both users in consistent state, not in each other's VD
- At t₁, user v at S_j moves down by one step (no syn sent)

Introduction 0000	Queueing Theory Analysis: Analytic Results	Consistency o●ooooo	Summary			
Consistent and Incon	Consistent and Inconsistent States					
Inconsistency Scenario 2						

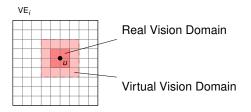
Scenario 2: User *u*'s vision domain does not contain users who should be there


- At t₀, both users in consistent state, not in each other's VD
- At t₁, user v at S_i moves down by one step (no syn sent)
- At t_2 , user u at S_i moves left by one step (no syn sent)

Introduction	Queueing Theory Analysis: Analytic Results	Consistency o●ooooo	Summary			
Consistent and Inconsis	Consistent and Inconsistent States					
Inconsistend	Inconsistency Scenario 2					

Scenario 2: User *u*'s vision domain does not contain users who should be there

- At t₀, both users in consistent state, not in each other's VD
- At t₁, user v at S_i moves down by one step (no syn sent)
- At t₂, user u at S_i moves left by one step (no syn sent)
- At t₃, v moves right by one step (consistency restored)


Introduction	Queueing Theory Analysis: Analytic Results	Consistency	Summary
Virtual Visian Damain			

Virtual Vision Domain

Weak Consistency with the Virtual Vision Domain

A Virtual Vision Domain technique is introduced that achieves weak consistency The basic idea is to extend the vision domain to a larger size:

- The virtual vision domain is used to determine if a syn packet should be sent
- The real vision domain is used to determine a user's state

A virtual vision domain that is 2 units larger that the real vision domain prevents inconsistency in the above examples!

Introduction 0000	Queueing Theory Analysis: Analytic Results	Consistency	Summary
Performance Evaluation			
Experiment	Setup		

A simulation study was done to answer the following questions:

- What is the amount of inconsistency if we rely only on future user movements to restore consistency?
- If the virtual vision domain technique is used, how much improvement in consistency can be achieved, and what are the additional resources required?

Metrics to measure inconsistency:

- f fraction of users in the inconsistent state
- t mean time that a user spends in the inconsistent state

m mean number of avatars that are incorrectly seen by a user Experiments

- G1 relies only on future user movements to restore consistency
- G2 uses a virtual vision domain with size = D + 2
- G3 uses a virtual vision domain with size = D + 4

Queueing Theory Analysis: Analytic Results

Consistency

Performance Evaluation

Experiment Data

L = 100 and N = 000					
D	Strategy	f	K_{min}	t	m
	G1	0.1794	2	2.0922	1.1551
2	G2	0.0308	2	1.2919	1.0365
	G3	0.0025	2	1.0091	1.0128
	G1	0.1536	2	1.8253	1.1320
4	G2	0.0165	2	1.1939	1.0306
	G3	0.0010	2	1.0000	1.0110
	G1	0.0809	2	1.5396	1.0935
6	G2	0.0061	2	1.0945	1.0246
	G3	0.0031	3	1.2049	1.0281

E = 100 and N = 800

E = 100 and N = 1000

D	Strategy	f	K_{min}	t	m
	G1	0.1930	2	1.9367	1.1603
2	G2	0.0669	3	1.4726	1.0728
	G3	0.0166	4	1.3143	1.0414
	G1	0.2852	3	2.7986	1.2653
4	G2	0.0817	4	1.6136	1.1184
	G3	0.0341	6	1.7132	1.0826
	G1	0.2964	4	2.8236	1.3431
6	G2	0.1219	6	1.9330	1.2017
	G3	0.0540	8	1.9425	1.1246

Queueing Theory Analysis: Analytic Results

Consistency

Performance Evaluation

Experiment Data Continued

D	Strategy	f	K_{min}	t	m
	G1	0.1592	2	2.5167	1.1248
2	G2	0.0420	2	1.7757	1.0345
	G3	0.0087	2	1.4837	1.0107
	G1	0.1390	2	2.4896	1.1219
4	G2	0.0384	2	1.7478	1.0370
	G3	0.0062	2	1.4887	1.0144
	G1	0.1207	2	2.2335	1.1071
6	G2	0.0264	2	1.5959	1.0327
	G3	0.0037	2	1.4302	1.0163

E = 150 and *N* = 800

E = 150 and N = 1000

D	Strategy	f	K_{min}	t	m
	G1	0.1346	2	2.3286	1.1339
2	G2	0.0404	2	1.6246	1.0348
	G3	0.0199	3	1.6495	1.0240
	G1	0.1646	2	2.3217	1.1264
4	G2	0.0819	3	2.0434	1.0776
	G3	0.0343	4	2.0924	1.0473
	G1	0.2573	3	2.6904	1.2213
6	G2	0.1106	4	2.2693	1.1184
	G3	0.0443	5	2.7360	1.0675

Introduction	Queueing Theory Analysis: Analytic Results	Consistency ○○○○○●	Summary		
Performance Evaluation					
Experimer	Experiment Results				

- When a virtual vision domain is used, *f* is significantly reduced
 - *f* is in the range of 15 to 30% under strategy G1
 - f is less than 9% for most cases under strategy G2
 - f is less than 2% for most cases under strategy G3
- A larger vision domain generally requires more servers. For example, E = 150, N = 1000 and D = 4, $K_{min} = 2, 3$, and 4 for G1, G2, and G3 respectively.
- A virtual environment that is more dense may require a larger number of servers
- The results do not show an obvious relationship between *t* and the different strategies
- *m* decreases as *D* increases
 - Furthermore, $m \rightarrow 1$ as $D \rightarrow E$

Introduction	Queueing Theory Analysis: Analytic Results	Consistency	Summary
Summary			

• We investigated the performance and scalability of a two-level architecture for DVE systems

Introduction	Queueing Theory Analysis: Analytic Results	Consistency 0000000	Summary
Summary			

- We investigated the performance and scalability of a two-level architecture for DVE systems
- We obtained analytic results for the total arrival rate of packets to each server and these results confirmed that the two-level architecture is scalable

Introduction	Queueing Theory Analysis: Analytic Results	Consistency	Summary
Summary			

- We investigated the performance and scalability of a two-level architecture for DVE systems
- We obtained analytic results for the total arrival rate of packets to each server and these results confirmed that the two-level architecture is scalable
- We investigated how inconsistencies may arise and be restored

Introduction	Queueing Theory Analysis: Analytic Results	Consistency	Summary
Summary			

- We investigated the performance and scalability of a two-level architecture for DVE systems
- We obtained analytic results for the total arrival rate of packets to each server and these results confirmed that the two-level architecture is scalable
- We investigated how inconsistencies may arise and be restored
- We proposed a new technique called Virtual Vision domain

Introduction	Queueing Theory Analysis: Analytic Results	Consistency	Summary
Summary			

- We investigated the performance and scalability of a two-level architecture for DVE systems
- We obtained analytic results for the total arrival rate of packets to each server and these results confirmed that the two-level architecture is scalable
- We investigated how inconsistencies may arise and be restored
- We proposed a new technique called Virtual Vision domain
- Simulation results showed that the virtual vision domain technique is effective in reducing inconsistency at the expense of a potential increase in the number of servers required

Discussion Questions

- Are the standard assumptions that were used to enable the queueing theory analysis valid? For example, user movement was assumed to be modelled by a Markovian chain and the arrival rate of update packets was assumed to follow an exponential distribution.
- The authors suggest that virtual vision domain technique, which achieves "weak consistency," may be suitable for role playing games like World of Warcraft, or social sumilation games such as The Sims, but state that it may not be suitable for fast paced games, such as first person shooters. What other techniques could be used for this type of game?