
Introduction
OpenVZ

System Overview
Validation

Conclusion

Dynamic Resource Management using
Operating System-Level Virtualization

Computer Science 4490z
Undergraduate Research Project Thesis

Alexander Pokluda

Department of Computer Science
University of Western Ontario

April 10, 2010

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Types of Virtualization

Definition

Virtualization is the abstraction of computer resources

Platform virtualization enables the execution of one or more
virtual machines on a single computer
Modern types of platform virtualization include:

full virtualization
hardware-assisted virtualization
paravirtualization
operating system-level virtualization

In operating system-level virtualization, all virtual machines (also
known as virtual environments ) share one operating system
kernel
Operating system-level virtualization has very little overhead so
applications can achieve near-native performance

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Motivation for Using Virtualization

By using virtual machines to run many independent software
systems on a single physical server, greater resource utilization
levels can be achieved

Greater resource utilization levels mean that less physical
resources are required and overall costs are reduced

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Problem Statement

New Problem

How do we effectively manage the resources of a cluster of hardware
nodes as a single unit?

This thesis expands upon a system called Golondrina
Golondrina works by identifying localized resource stress
situations then attempting to dissipate them by reallocating
system resources and, if necessary, by migrating or replicating
virtual environments

Contributions:

memory management studied

heuristic developed

new architecture

CPU code as plug-in

memory plug-in developed

documentation

testing
A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Resource Management
Managing Resource Stress Situations

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Resource Management
Managing Resource Stress Situations

OpenVZ

What is OpenVZ?

OpenVZ is a mature open-source community project that implements
operating system-level virtualization using Linux

OpenVZ provides four primary controls for per-container resource
accounting and limiting:

user beancounters

disk quota management

CPU fair scheduler

configurable input/output priorities

System administrators can also use standard Linux resource
management and accounting mechanisms such as tc and
iptables

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Resource Management
Managing Resource Stress Situations

Memory Allocation

OS-level virtualization makes it trivial to add or remove arbitrary
amounts of memory to or from a container in real time. In
OpenVZ, this is done with the user beancounters.

There are currently 24 beancounters and each has 5 attributes:
held, maxheld, barrier, limit, failcnt

Three main user beancounters relate directly to memory
management:

vmguarpages guaranteed virtual memory pages

privvmpages private virtual memory pages

oomguarpages out-of-memory guaranteed memory pages

In Linux and OpenVZ memory is overcommitted by default

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Resource Management
Managing Resource Stress Situations

Figure: Typical relative settings of the privvmpages, vmguarpages and
oomguarpages user beancounters for a container

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Resource Management
Managing Resource Stress Situations

Golondrina and OpenVZ Resource Management

First Version

monitored a single resource:
the processor

monitored CPU time using the
virtual file
/proc/vz/vestat

dissipated resource stress
situations using migrations
or replications

has been packaged as a
plug-in in the current version

Current Version

memory management plug-in
developed

monitors memory usage
within each container and for
hardware node using
user_beancounters virtual
file and vzmemcheck

dissipates resource stress
using user beancounters ,
migrations and replications

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Resource Management
Managing Resource Stress Situations

Managing Resource Stress Situations

Goal: ensure resource availability for each virtual machine while
achieving high levels of resource utilization on each hardware
node
Ideally containers should be distributed such that a
predetermined level of resource utilization, say x , is achieved on
each hardware node
This is equivalent to the NP-complete subset-sum problem

Proof.
Let S0 be the set of containers to be distributed across several hardware nodes. If we wish to
achieve a target resource utilization level of x on each hardware node, then we need to find a
subset s0 ⊆ S0, such that the sum of the resource usage of each container in s0 is exactly x . Once
this subset has been found, the containers in s0 are assigned to a hardware node and the process
repeats for S1 = S0 − s0.

Finding good resource allocation strategies is challenging and
and active area of research

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Resource Management
Managing Resource Stress Situations

Resource Stress Indicators for Memory

1 An increase in oomguarpages failcnt value
raw score : the increase in oomguarpages failcnt, i.e. the number of processes
that have been killed

normalized score =



0.0 if rawscore is 0
1.0 otherwise

2 An increase in privvmpages failcnt value
raw score : the increase in privvmpages failcnt, i.e. the number of failed memory
allocation attempts

normalized score =



0.0 if rawscore is 0
1.0 otherwise

3 Current memory usage (oomguarpages held + kmemsize
held + *buf held) versus oomguarpages barrier

raw score : (oomguarpages held + kmemsize held + *buf held) /
oomguarpages barrier, i.e. the fraction of guaranteed memory used
normalized score = min{1.0, rawscore}

4 privvmpages held versus privvmpages barrier
raw score : privvmpages held / privvmpages barrier, i.e. the fraction of
memory the memory allocation guarantee used
normalized score = min{1.0, rawscore}

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Resource Management
Managing Resource Stress Situations

Resource Stress Resolution for Memory

A basic heuristic policy for resolving a memory stress situation in a
container:

1 Increase the memory limit for the stressed container
2 Migrate stressed container to another hardware node
3 Migrate another container
4 Alternatively, start a replica

A basic heuristic policy for resolving a memory stress situation on a
hardware node:

1 Migrate the container that is using the largest amount of
resources

2 Migrate the container that is using next largest amount of
resources

3 Repeat

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Architecture Overview
Design Overview
Source Code Availability and Documentation

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Architecture Overview
Design Overview
Source Code Availability and Documentation

Architecture Overview

The system has been architected as a research system that will
be a test bed for various resource management polices

The primary architectural pattern for Golondrina is “client-server”

Client Component

collects resource usage statistics and sends them to the server

Gate Component

manages configuration for an external load balancer

Server Component

Analyses resource usage statistics to identify resource stress
situations

Instructs client components to adjust resource limits and perform
migrations and replications

Instructs gate component to update load balancing configuration

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Architecture Overview
Design Overview
Source Code Availability and Documentation

Architecture Overview

The system has been architected as a research system that will
be a test bed for various resource management polices

The primary architectural pattern for Golondrina is “client-server”

Client Component

collects resource usage statistics and sends them to the server

Gate Component

manages configuration for an external load balancer

Server Component

Analyses resource usage statistics to identify resource stress
situations

Instructs client components to adjust resource limits and perform
migrations and replications

Instructs gate component to update load balancing configuration

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Architecture Overview
Design Overview
Source Code Availability and Documentation

Architecture Overview

The system has been architected as a research system that will
be a test bed for various resource management polices

The primary architectural pattern for Golondrina is “client-server”

Client Component

collects resource usage statistics and sends them to the server

Gate Component

manages configuration for an external load balancer

Server Component

Analyses resource usage statistics to identify resource stress
situations

Instructs client components to adjust resource limits and perform
migrations and replications

Instructs gate component to update load balancing configuration

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Architecture Overview
Design Overview
Source Code Availability and Documentation

Architecture Overview

The system has been architected as a research system that will
be a test bed for various resource management polices

The primary architectural pattern for Golondrina is “client-server”

Client Component

collects resource usage statistics and sends them to the server

Gate Component

manages configuration for an external load balancer

Server Component

Analyses resource usage statistics to identify resource stress
situations

Instructs client components to adjust resource limits and perform
migrations and replications

Instructs gate component to update load balancing configuration

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Architecture Overview
Design Overview
Source Code Availability and Documentation

Figure: Golondrina deployment diagram

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Architecture Overview
Design Overview
Source Code Availability and Documentation

Design Overview

The software for collecting and analysing resource usage
statistics has been encapsulated in plug-ins

sensor plug-ins
overload identifier plug-ins
overload resolver plug-ins

Each overload resolver plug-in is given a priority value

Once a resource stress has been identified, the overload
resolver plug-ins for the stressed resource(s) are each given a
chance in turn to try and dissipate the resource stress

Certain aspects of a policy’s state (e.g. a threshold value) can up
updated at runtime

A configuration manager subsystem maintains a database of
configuration information for the whole system and can be used
to alter the system’s run-time behaviour

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Architecture Overview
Design Overview
Source Code Availability and Documentation

Source Code Availability and Documentation

The source code developed as part of this thesis is free software,
anyone is free to redistribute it and/or modify it under the terms
of the GNU General Public Licence
Source code and documentation is available at:
http://alexanderpokluda.ca/trac/cs4490

A. Pokluda Dynamic Resource Management using OS-Level Virtualization

http://alexanderpokluda.ca/trac/cs4490


Introduction
OpenVZ

System Overview
Validation

Conclusion

Test Environment
Experimental Results

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Test Environment
Experimental Results

Test Environment

Two configurations were investigated for the virtual machine to be
placed under load:

TPC-W benchmark LAMP software stack

Joomla! was selected as the specific application to be tested
running on the LAMP stack

Apache JMeter was used for load generation and performance
monitoring

Containers created using CentOS 5.3 template

Also installed: Apache HTTP Server ver. 2.2.3, MySQL ver.
5.0.45, PHP ver. 5.1.6, and Joomla! ver. 1.5.14

Three identical hardware nodes, each with 3.40 GHz dual-core
processor, 2 GiB RAM, 2 GiB swap

Apache HTTP Server prefork module used

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Test Environment
Experimental Results

Experimental Results

Test 0 – No Memory Stress

Test 1 – Unresolved Memory Stress

Test 2 – Memory Stress Resolved Locally

Test 3 – Memory Stress Resolved with Migration

Test Avg Min Max Std Dev Err % Throughput Fail Count
0 448 166 2275 243.72 0.00 8.0 0
1 1082 124 55576 5817.40 2.22 3.6 1002
2 866 115 49214 4748.84 1.63 4.9 809
3 370 137 4354 419.42 9.24 5.5 1143

Table: Results for Four Tests, each with four runs

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Future Work
Summary

Outline

1 Introduction

2 OpenVZ
Resource Management
Managing Resource Stress Situations

3 System Overview
Architecture Overview
Design Overview
Source Code Availability and Documentation

4 Validation
Test Environment
Experimental Results

5 Conclusion
Future Work
Summary

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Future Work
Summary

Future Work

Experiments involving memory stresses and replication

Study the interaction between policies when a container is
experiencing a stress for more than one resource

Possible improvements in future versions:

Add a mechanism to reclaim resources

Use remote storage for container private areas

Distribute decision making

Add memory resource usage prediction

A. Pokluda Dynamic Resource Management using OS-Level Virtualization



Introduction
OpenVZ

System Overview
Validation

Conclusion

Future Work
Summary

Summary

Golondrina is a system that performs dynamic resource
management among a cluster of hardware nodes

Different models of virtualization and the advantages of
operating system-level virtualization were discussed

The heuristic currently used to detect and dissipate memory
stress situations was presented

The architecture and design of Golondrina was discussed

The functionality of the system was validated using a series of
experimental tests

A brief summary of experiments yet to be performed and
possible future enhancements was presented

A. Pokluda Dynamic Resource Management using OS-Level Virtualization


	Introduction
	OpenVZ
	Resource Management
	Managing Resource Stress Situations

	System Overview
	Architecture Overview
	Design Overview
	Source Code Availability and Documentation

	Validation
	Test Environment
	Experimental Results

	Conclusion
	Future Work
	Summary


