
Managing Dynamic Memory Allocations
in a Cloud through Golondrina

Alexander Pokluda, Gastón Keller and Hanan Lutfiyya
Department of Computer Science

The University of Western Ontario
London, Canada

{gkeller2,hanan}@csd.uwo.ca

Abstract—In this paper, we present a policy-based framework
that supports automated dynamic resource management in a
virtualized environment. This allows for flexibility in how re-
sources are allocated. We show how this framework can be used
to support memory management through the use of migration
and making local resource adjustments.

Keywords-virtualization; cloud computing; policy-based man-
agement; memory management; migration

I. INTRODUCTION

Modern data centers are comprised of tens of thousands of
servers, and perform the processing for many Internet business
applications. To guarantee that an application will always be
able to cope with all demand levels the application is statically
allocated enough resources so that peak demand is satisfied.
The unit of allocation is typically a physical machine. One
estimate is that servers are over-provisioned by over 500% in
order to deal with peaks [1]. The result is that the physical
machines are often underutilized. However, some physical
machines may sometimes become heavily-loaded because of
time-varying demand [2].

One approach to increasing utilization is server consolida-
tion, which consists of hosting multiple servers in one physical
machine. This approach is possible through virtualization.
Virtualization refers to an abstract layer between the operating
system and the hardware. The layer provides an interface to
the actual hardware that allows for the support of a number
of virtual machines where a virtual machine typically has
application software installed on it. Virtualization reduces
the unit of resource allocation to fractions of a physical
machine. This potentially benefits data centers by allowing
several applications to make use of the same physical machine.
If the virtual machines are placed on a physical machine
based on peak demand, then the physical machine can still
be highly underutilized. On the other hand if the virtual
machines are placed on a physical machine based on the
average demand, then this may result in virtual machines
competing for the same resources when demand increases.
The reason is that demand for an application may increase
such that it needs computing resources currently being used
by other applications on the same physical machine.

The computing resources needed by an application change
over time which suggests that there is a need to dynamically

allocate resources to applications as demand changes. This is
referred to as on-demand resource allocation and we use the
term cloud to refer to a data center that supports on-demand
resource allocation.

Much of the work in dynamic resource provisioning for
Internet applications [3] involves constructing a performance
model that is used to predict application resource requirements
based on previous application behaviour. The predicted re-
source requirements are used to determine the needed number
of application instances (e.g., [4], [5]).

Performance models are also used to periodically determine
optimal placements of virtual machines (e.g., [6]–[8]) on phys-
ical machines based on a set of criteria that is typically mapped
to an optimization model. This may require the migration
of virtual machines from one physical machine to another
physical machine. Since migration incurs CPU and network
overheads and thus may degrade application performance, this
work is typically done as part of periodic maintenance. The
implication is that most of this work is not intended to respond
to relatively sudden workload changes due to a burst of load
for an application or a node failure [3].

As noted in [9] most of the existing work does not consider
adjusting local resource allocations to virtual machines. The
work in [9] shows the advantages of adjusting local resource
allocations to a virtual machine by adjusting parameters that
control CPU cycles allocated to virtual machines. The paper
then proceeds to show an optimization model that not only
assumes migrations but also adjustments to allocated CPU
cycles. The work in [10] allocates additional memory in
response to a service level objective (SLO) that is violated.
The primary action in response is migration. Although the
paper states that it determines the cause of the SLO violation
no details are presented. The key commercial cloud platforms,
e.g. Amazon Web Services [11] and Microsoft Azure [12],
allow for changes to the number of virtual machines in use
for an application but there appears to be little support for
adjusting local resources for a virtual machine.

The specific contributions discussed in this paper are the fol-
lowing: memory management using OpenVZ [13] was studied,
a simple heuristic for identifying memory stress situations was
developed using a black-box approach, a simple heuristic for
adjusting memory allocations was developed and experimented
with, and a flexible system framework that supports the



separation of decision making from the specific virtualization
technology is presented. The latter was of interest since very
little work allows for fully automated management. Although
[10] does provide such a framework we differ in that we
allow for local resource adjustments nor do they show a
direct relation between policies and management framework
configuration.

The rest of the paper is organized as follows: Section II
discusses the architecture of the system, Section III introduces
the memory management parameters, Section IV shows how a
memory stress situation is detected, Section V describes how
the system can react to memory stress situations, Section VI
describes the system’s prototype implementation, Section VII
discusses the experiments, and Section VIII concludes.

II. ARCHITECTURE

An important aspect of a management framework is the
ability to determine the appropriate action in response to work-
load changes. The appropriate action depends on strategies
and those strategies may change over time [14]. Strategies
can be represented through policies [14]. This section presents
a policy-based management framework which is graphically
depicted in Figure 1. More details can be found in [15] and
[16].

A. Policies

A policy associates an event with one or more rules of
the form if condition then actions. The rules are evaluated
when the event occurs. One type of policy is used to specify
a required operational condition expected at run-time and
the actions to be taken if the condition is violated. Opera-
tional conditions represent run-time requirements of system
behaviour (e.g., expected CPU load, memory consumption).

An example policy is presented, using Ponder-like formal-
ism [17], in Example 1.

Example 1:

oblig NotifyMemoryStressViolation{
target DepartmentContainers
subject Manager
on memoryStress(containerID,

hostNameID,
freePhysicalPages);

do IncreaseMemory(containerID, hostNameID)
when freePhysicalPages > N;

do t = ChooseTarget()
when freePhysicalpages < N ->
MigrateContainer(containerID,hostNameID,t);

}

The on clause specifies an event. The name of the event is
memoryStress. The event expression associated with this name,
which is assumed to be previously defined, is the following:
memoryStressScore > 0.80, where memoryStressScore is the
attribute that represents the memory stress score (this is
discussed in detail in Sections III and IV). This indicates
that the event occurs if the container’s memory stress score
exceeds 0.80. The event specification is parameterized by
attributes (e.g. containerID, hostNameID, freePhysicalPages).

Essentially the event is generated if an operational condition is
violated. The information associated with the generated event
are the attributes that parameterize it.

The entity specified in the subject clause is a manager
process that determines the actions to be carried out when the
event specified in the on clause is true. The target clause
specifies the group (or domain) to which the policy applies -
HRDepartmentContainers in this case. This group refers
to a set of containers (a type of virtual machine) in a specific
department.

The actions are determined by the rules. The condition in
the rule is used to determine if the actions specified in the rule
should be executed. In Example 1, each do clause specifies
a rule to be evaluated when the event occurs. The first rule
states that the memory allocation to the container should be
adjusted if there is sufficient memory on the hardware node
that the container is on. There may not be sufficient memory
to accommodate a container’s resource needs. Migrating a
container is another possible action. The implementation of
ChooseTarget() may simply be to pick the hardware node with
the most free pages and that the number of free pages exceeds
some threshold value. There could be other criteria used for
choosing a target physical node. A configuration policy is used
to choose a particular implementation of ChooseTarget(). An
example of a configuration policy is seen in Example 2.

Example 2:

oblig ConfigurePolicy{
subject Manager
on ConfigurePluginRequest(k,p);
do ConfigureChoseTargetPlugin(p)
when k = ‘‘ChooseTargetLocation";

}

This policy determines the action to be taken upon receipt
of a configuration request. In this example t is the keyword
and p is the reference to the appropriate plugin. If the keyword
is “ChooseTargetLocation” then the plugin for p is used as the
plugin for ChooseTarget().

B. Sensors and Actuators

Monitoring requires some form of instrumentation, which
we refer to as a sensor, specific to the managed object.
Information about a managed object is provided, in practice,
by a variety of mechanisms, including SNMP agents, JMX,
reading accounting files in the proc filesystem. Each sensor
has an interface, but these interfaces are different for different
types of sensors. Sensors often have a limited ability to add
or delete conditions to be evaluated. Furthermore it may be
necessary to start and stop sensors. The lack of a common
and expressive interface to sensors makes it challenging to
automate the configuration of management entities to support
policies. We address this challenge with the sensor agent.
Sensor agents interface with sensors.

A sensor agent’s interface provides methods that include
(i) starting and stopping sensors; (ii) testing whether a sensor
is already running and if it is not starting the sensor; and



Event Monitor Event Manager Configuration
Manager

Manager

Sensor Mgr

CPU Agent Mem Agent

CPU Sensor Mem Sensor

Container

Sensor Mgr

CPU Agent Mem Agent

CPU Sensor Mem Sensor

Container

Hardware Node

Fig. 1. Golondrina’s architecture

(iii) getting data from a sensor. The implementation of these
methods is specific to the sensor.

The set of sensors on a hardware node is managed by
the sensor manager. A sensor manager maintains information
on sensors on the hardware node. The interface of a sensor
manager provides methods that allow the sensor manager to
be informed of new sensors being added or removed from the
hardware node. Information maintained for a sensor includes
the frequency with which sensor data should be collected and
the recipient to which the sensor manager should forward that
data to. Separating sensors from sensor managers allows for
the sensor manager to be independent of the virtualization
technology used. In other words, the implementation of the
sensor manager does not change if the virtualization technol-
ogy changes from OpenVZ [13] to Xen [18].

An entity that changes the system is referred to as an
actuator. Similar to sensors there is an actuator manager and
actuator agent.

C. Manager

The Manager includes an Event Monitor that receives
sensor data which it analyzes to determine if an event
has occurred. The occurrence of an event is based on the
evaluation of the condition associated with the event, e.g.
memoryStressScore > 80. For each operational condition
policy, the Event Detection server maintains a set of tuples in
the form of (e,p), where p represents a policy identifier and e
is the event expression. We note that evaluation of operational
conditions can also be done by sensor agents which can also
maintain the set of tuples. The experiments in this paper



assume that it is the Manager’s Event Monitor that evaluates
operational conditions.

The Event Manager is used to associate an event received
by the Manager with one or more rules. When an event is
detected the Event Manager finds the rules associated with
the event and uses those rules to determine the appropriate
action.

Currently there are three primary mechanisms used to
dissipate resource stress situations: migration, replication and
adjustment of parameters that allocate local computing re-
sources to a container. Earlier we discussed that migration
requires a target physical node to be chosen and the choice of a
target depends on specific criteria. The Configuration Manager
associates plugins with specific functions.

D. Interactions

One approach to supporting the policy described in Example
1 is briefly described. Each sensor manager is requested to
send memory utilization data in fixed time intervals. The
sensor manager does so by contacting the memory utilization
sensor. When the Event Monitor receives the data it evaluates
the condition specified in the policy. If the condition evaluates
to true then it calls the Event Manager to extract the rules to
be evaluated. At start up or when a new policy is added, the
policy is read to configure the different architectural entities.

III. MEMORY MANAGEMENT PARAMETERS

Today most operating systems assume that memory is
allocated as pages. The amount of memory actually used
depends on application behaviour. For example, a malloc() is
used by programs to make a request for memory of a specific
size. If successful a pointer to a block of memory is returned.
Another need arises when the stack needs more memory to
accommodate function and system calls. Insufficient memory
means that the malloc() or that function/system calls fail since
the process stack is not allowed to expand.

In this section we describe the memory management pa-
rameters used. This is based on OpenVZ. OpenVZ is a Linux
kernel modified to run multiple, isolated containers (i.e. virtual
user-space environments). The primary advantage of OpenVZ
compared to other virtualization technologies (e.g., Xen [18],
VMWare [19]) is its memory management capabilities. Essen-
tially an OpenVZ container is guaranteed a certain amount of
memory. If, however, there is memory not being used then a
container that needs more memory can get more than what is
guaranteed.

Each container has its own set of parameters, that allows for
different memory allocation schemes for each container. The
system parameters can be mapped one on one with a subset
of OpenVZ’s system resource control parameters (also known
as user beancounters).

In this discussion we use the term alloc to refer to the
current number of pages allocated to a container. The term
allocUsed is used to refer to the number of pages actually
used by the container. The pages are assumed to include user,
kernel and swap spaces.

The first parameter to consider is allocationGuarantee,
which represents the number of pages that a container is
guaranteed to be granted if requested. The next parameter to
consider is allocationLimit, which determines the maximum
number of pages that can be allocated to a container. Between
the previous two parameters exists allocationBarrier - a soft
limit so to speak. These parameters are responsible for deter-
mining the success of a memory allocation request.

A memory allocation request for n pages is guaranteed to
succeed if the following is true:

n + alloc ≤ allocationGuarantee

All memory requests will succeed if n is less than the
number of free physical pages and if the following is true:

n + alloc ≤ allocationBarrier

If n+alloc is greater than allocationBarrier then only
a high priority request (e.g., process stack expansion) will
succeed, but only if n is less than the number of free physical
pages and if the following is true:

n + alloc ≤ allocationLimit

Beyond allocationLimit every request fails, independently
of the availability of unallocated memory pages.

It is possible for the sum of the allocationLimit values of
all the containers hosted in a hardware node to exceed the
total amount of physical memory available. Thus, effectively
overselling memory.

The last parameter to consider is minMemoryGuarantee,
which serves as a safety limit. When a hardware node runs out
of memory (RAM plus swap space), the kernel starts searching
for processes to be killed so as to free memory. Those
containers whose allocUsed value is lesser than minMemo-
ryGuarantee will not have processes killed. The kernel will
kill processes from those containers that are using the largest
amounts of memory in excess of minMemoryGuarantee.

IV. MEMORY STRESS DETECTION MECHANISM

CPU and memory utilization statistics are collected periodi-
cally for each container. The memory utilization statistics serve
to calculate a memory stress score for each container. This
score indicates whether a container needs additional memory.

At time ti the following information is collected for
each container: (i) the number of failed allocation attempts
since start of the current accounting period (denoted by
failcntAllocationsi), (ii) the number of processes killed
since the start of the current accounting period (denoted by
failcntKillsi), (iii) the number of memory pages allocated
(denoted by alloci), and (iv) the number of allocated memory
pages actually used (denoted by allocUsedi).

The following algorithm shows how the collected infor-
mation is used to calculate the memory stress score for a
container. We note that a similar approach can be used for
calculating a memory stress score for a physical node.

The first and second lines calculate the number of process
kills and failed allocations in the time period (ti−1, ti]. s0 is



1: x = failcntKillsi - failcntKillsi−1

2: y = failcntAllocationsi - failcntAllocationsi−1

3: if x > 0 then
4: s0 = 1;
5: end if
6: if y > 0 then
7: s1 = 1;
8: end if
9: s2 = min (1, allocUsedi/minMemoryGuarantee);

10: s3 = min (1, alloci/allocationBarrier);
11: stressScorei = max (s0, s1, s2, s3);

the strongest indicator of a memory stress since processes are
being killed to free up memory. s1 is also a strong indicator
of stress since memory allocation requests are being rejected.
s2 indicates the ratio of memory in use to the safety limit

mentioned in Section III. If s2 is equal to one, then the
memory is use exceeds the safety limit and thus the container’s
processes are at risk of being killed in the event of an overall
memory shortage on the hardware node.
s3 indicates the ratio of allocated memory to the soft limit

allocationBarrier. If s3 is equal to one, then the container has
been allocated memory in excess of the soft limit and therefore
future memory allocation requests will be denied unless they
are high priority requests.

V. MEMORY STRESS RESOLUTION

The policy used in this work for resolving memory stress
situations is briefly described as follows. If a container is
memory stressed (defined as the memory stress score being
greater than 0.80) and the hosting hardware node has memory
available, then the memory limits defined by the memory
management parameters are increased by a fixed amount for
the container, granting the container access to more memory.
All four memory parameters described in Section III are
increased.

If a container is memory stressed, but the hosting hardware
node has no memory available, then the stressed container
is migrated to another hardware node with sufficient available
memory to allow the memory limits to be increased. The latter
may not always be possible, so in future work we will consider
migrating a different container on the same hardware node, so
as to free up memory that could be allocated to the stressed
container.

When a hardware node is memory stressed, an attempt is
made to migrate the hosted container that is using the largest
amount of memory on that hardware node. If this cannot be
done without causing a memory stress on another hardware
node, then the container with the next largest memory utiliza-
tion is chosen and the process is repeated.

VI. PROTOTYPE IMPLEMENTATION

The prototype developed, Golondrina, assumes an OpenVZ
virtualization environment which provides operating system-
level virtualization.

The prototype was developed in Python version 2.4.3.
The communications between system components are handled

through the event-driven networking engine Twisted version
8.20. We have implemented sensors that read accounting
files in the proc filesystem in order to collect CPU and
memory utilization data from containers and hardware nodes.
Functions that implement some sort of control algorithm such
as ChooseTarget() are implemented as a plugin.

There are three actuators. The migration actuator relocates a
container. The replication actuator creates a new instance of a
container hosted in one hardware node into another. The mem-
ory adjustment actuator modifies the memory management
parameters (see Section III). The implementation of migration
and replication is described in more detail in [20].

VII. EXPERIMENTS

This section presents four experiments. The test environ-
ment is described first, followed by the experiments, and
finally a discussion of the results and implications.

A. Test Environment

The test environment consisted of three identical hardware
nodes, named bravo01, bravo02 and bravo03. Each hardware
node contained a 3.40 GHz dual-core Intel Pentium D CPU
with a 2 MiB cache, 2 GiB of RAM and 2 GiB of swap space.
bravo01 and bravo03 ran CentOS version 5.3 while bravo02
ran CentOS version 5.2. Each hardware node ran an OpenVZ
kernel based on Linux version 2.6.18.

For the experiments, a container hosted a web application
running on top of a LAMP (Linux-Apache-MySQL-PHP)
software stack. The web application was Joomla!, a free and
open source web content management system. The software
stack consisted of Apache HTTP Server version 2.2.3, MySQL
database server 5.0.45 and PHP version 5.1.6. The containers
were running CentOS version 5.3 for the Linux component of
the software stack.

Load generation for the web application running in the
container was carried out using Apache Jakarta JMeter version
2.3.4. JMeter threads were used to simulate web browsers
belonging to different users. The sample website that comes
with Joomla! was the target of the HTTP requests generated
with JMeter.

B. Experimental Runs

The goal of the experiments was to study the impact of the
policies specified in Section II on memory utilization.

For the experiments, we leveraged JMeter’s capacity to
specify the number of test threads to run, the loop count and
the ramp-up period. The loop count determines the number
of times each thread loops. The ramp-up period, measured in
seconds, is used to set the rate at which test threads are started.

The results presented in Table I are based on the number
of threads, ramp-up period, loop count and frequency that
memory utilization information is sent to the Manager set
to 9, 2, 5, and 10 respectively for experiments 0, 1, 2. The
results seen for Experiment 3 assume a ramp-up period of
36, the frequency of sending memory usage data is set to
2 (the explanation is provided later). The results in Table I



assume that the memory stress score threshold value is 0.80
for Experiments 0,1,2 but is 0.70 for Experiment 3 (more
discussion later).

The experiments consisted of generating HTTP request for
eight different web pages of the Joomla! sample website. Each
iteration of a JMeter test thread would load these eight pages in
sequence and then repeat the process until it had been repeated
as many times as the loop count value. The time between
iterations followed a Gaussian distribution.

For each experimental run we collected the minimum and
maximum response times observed for each of the eight web
pages, the number of HTTP responses that did not contain a
valid HTML page (as a percentage), the throughput (rate of
completed requests), the average bandwidth, and the average
number of bytes of each HTTP response. The throughput value
was computed using the elapsed time between the moment
when the first HTTP request was sent and the moment when
the last HTTP response was received. Each experiment ran
four times. The average was taken for each of the metrics
described in the previous paragraph. This is reflected in Table
I.

The three hardware nodes were used as follows: bravo01
ran the Golondrina Manager component while bravo02 and
bravo03 ran the Golondrina client component (consisting of
the sensors and actuators); bravo01 was also used to run
JMeter, the load generator and performance monitor.

1) Experiment 0: This experiment is the base case. The
container that receives HTTP requests is given enough memory
so that no memory stress situation occurs. This establishes
upper-bound (best case) reference statistics. Essentially it
represents the results obtained when sufficient resources are
assigned to a container. In these experiments we assume that
allocationGuarantee is set to 128MiB, minMemoryGuarantee
is set to 100MiB, allocationLimit is initialized to 132MiB and
the value of allocBarrier is 128MiB.

2) Experiment 1: In this experiment the container starts
with the minimum number of resources assigned to it, i.e.
allocationGuarantee is set to 64MiB, minMemoryGuarantee is
set to 60MiB, allocationLimit is initialized to 66MiB and the
value of allocationBarrier is set to 64MiB. In this experiment
policies are disabled.

3) Experiment 2: This experiment is similar to that of
Experiment 1, but it uses a modified version of the policy
specified in Example 1. The modification is that the second
rule is not used.

4) Experiment 3: This experiment is similar to that of
Experiment 1, but uses the policies specified in Examples 1
and 2.

C. Discussion of Results

By comparing the minimum response times of HTTP re-
quests for experiments 0-3, it can be seen that the minimum
response time for runs without errors was about 166 mil-
liseconds, whereas experimental runs with higher error rates
had lower response times. This is likely due to responses
being generated quickly. The low minimum response times

likely occurred early in experimental runs when only the first
experimental thread was running–before the container became
memory stressed. This likely contributed to the high standard
deviation seen in the experimental runs in which the container
experienced a memory stress.

The large response times that resulted when the container
became memory stressed were due to the fact that the Apache
HTTP Server parent process was unable to create additional
child processes. In this case, new connections were queued
and handled by existing child processes after their current
connections were terminated.

In Experiment 1 there was a noticeable increase in the
maximum response time and corresponding decrease in the
throughput. Each run in this experiment also had a large fail
count, meaning that memory allocation requests, such as calls
to the C library’s malloc or fork functions, were denied. Thus,
the container was severely memory stressed. During each run
the CPU utilization on the hardware node hosting the stressed
container was monitored to ensure it remained below 100
percent. Similarly, the network bandwidth used was monitored
during each run and remained below 1.2 megabits per second.
Thus, the decrease in performance was due to the memory
shortage.

The four runs of Experiment 0 (no memory stress) and
Experiment 1 (unresolved memory stress) produced an average
throughput of 8.0 and 3.6 respectively. The four experimen-
tal runs of Experiment 2 (memory stress resolved locally)
produced an average throughput of 4.9. Golondrina detected
the memory stress, as expected, and increased the stressed
container’s memory limits. This resulted in a throughput
value that was substantially better than the throughput for
Experiment 1 (unresolved memory stress), but not as good as
the throughput for Experiment 0 (no memory stress). In this
experiment, an average of 314 memory allocation attempts
were denied by the kernel. This value is again substantially
better than 1002, the average fail count for runs in Experiment
1, but it indicates that the container was still severely stressed
for a short period of time. Although Golondrina successfully
detected and resolved the memory stress situation, Golondrina
did not react quickly enough to prevent memory requests from
being denied.

The reaction time could be improved by decreasing the de-
lay in the gathering of resource utilization statistics, decreasing
the threshold value for the memory stress score in the policy
stated in Example 1 or using some form of prediction.

For Experiment 3 we initially set ramp-up period, frequency
of sending data and memory stress score threshold the same as
for the other experiments. This caused migration failures since
the container ran out of memory before the migration was
completed. The reason for this is that OpenVZ starts a process
in the container as part of the checkpointing process for a live
migration. This process counts towards the container’s overall
resource utilization. If the container does not have enough
memory to accommodate this process, the migration will fail.
This suggests the need to take the cost of this process into
consideration before attempting to migrate a container.



TABLE I
EXPERIMENTAL RESULTS

Exp Avg Min Max Std Dev Err % Throughput Fail Count
0 448 166 2275 243.72 0.00 8.0 0
1 1082 124 55576 5817.40 2.22 3.6 1002
2 866 115 49214 4748.84 1.63 4.9 809
3 370 137 4354 419.42 9.24 5.5 1143

We then increased the ramp-up period, decreased the thresh-
old value for the memory stress score and decreased the
frequency of sending memory utilization statistics. This was
done to minimize the likelihood of the migration failing due
to a lack of memory in the container.

The experiments suggest that the threshold values for mem-
ory stress scores may need to be low enough to allow for
successful migrations. Another possibility is to modify the
conditions in the rules to take into account the rate that the
memory stress score increases. This will be a topic of further
investigation.

There was a significant variance in the error rate between
runs for Experiments 1, 2 and 3. One possible explanation
for this is the synchronization, or lack thereof, between the
moment when a resource stress occurred and the moment
when it was first detected by Golondrina. These experiments
show a correlation between the HTTP request error rate and
the memory allocation request fail count: as long as the fail
count remained below approximately one thousand, there were
nearly zero failed HTTP requests. Further investigation is
needed to confirm this relationship.

VIII. CONCLUSIONS

This paper presents early work in dynamic resource man-
agement with an emphasis on memory. The work presented
in this paper assumes monitoring of utilization occurs period-
ically and that this is used to adjust resources in response to
workload fluctuations. The intention is that this is done more
often than what is needed for optimization models. We see
this work as complimentary to work that focusses on virtual
machine consolidation. The framework allows for multiple
virtualization technologies to be used. Sensors are specific to
a virtualization technology. However, it should be possible to
determine a measure of resource stress. Once calculated it can
be used independently of the specific virtualization technology
in place.

The approach to increasing memory in this paper is straight-
forward. We will develop a plugin that supports adaptive
resource control using control theory techniques as found in
[2]. We will also examine a modification of the policy shown
in Example 1 to take into account the results of our initial
investigation as described in Section VII.

Dynamically adjusting resources to an application not only
should take into account the local resource demands where
the container is located but also the resource demands of
other application components. We will also look at using the
memory stress score to help in diagnosing SLO problems.

ACKNOWLEDGEMENTS

We thank the National Sciences and Engineering Research
Council of Canada (NSERC) for their support.

REFERENCES

[1] Youtube vs myspace growth. [08 Aug 2010].
[Online]. Available: http://blog.compete.com/2006/10/18/
youtube-vs-myspace-growth-google-charts-metrics/

[2] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive control of virtualized resources
in utility computing environments,” in EuroSys ’07: Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer Systems
2007. New York, NY, USA: ACM, 2007, pp. 289–302.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-
of-the-art and research challenges,” Journal of Internet Services
and Applications, vol. 1, pp. 7–18, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s13174-010-0007-6

[4] B. Urgaonkar and A. Chandra, “Dynamic provisioning of multi-tier inter-
net applications,” in ICAC ’05: Proceedings of the Second International
Conference on Automatic Computing. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 217–228.

[5] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based analytic
model for dynamic resource provisioning of multi-tier applications,”
in ICAC ’07: Proceedings of the Fourth International Conference
on Autonomic Computing. Washington, DC, USA: IEEE Computer
Society, 2007, p. 27.

[6] A. Verma, P. Ahuja, and A. Neogi, “pmapper: Power and migration cost
aware application placement in virtualized systems,” in Middleware ’08:
Proceedings of the 9th ACM/IFIP/USENIX International Conference on
Middleware. New York, NY, USA: Springer-Verlag New York, Inc.,
2008, pp. 243–264.

[7] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing sla violations,” 2007, pp. 119–128. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4258528

[8] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Application
performance management in virtualized server environments,” in
Network Operations and Management Symposium, 2006. NOMS
2006. 10th IEEE/IFIP, 2006, pp. 373–381. [Online]. Available:
http://dx.doi.org/10.1109/NOMS.2006.1687567

[9] M. Cardosa, M. R. Korupolu, and A. Singh, “Shares and utilities based
power consolidation in virtualized server environments,” in IM’09: Pro-
ceedings of the 11th IFIP/IEEE international conference on Symposium
on Integrated Network Management. Piscataway, NJ, USA: IEEE Press,
2009, pp. 327–334.

[10] M. Schmid, D. Marinescu, and R. Kroeger, “A framework for auto-
nomic performance management of virtual machine-based services,” in
Proceedings of the 15th Annual Workshop of HP Software University
Association, 2008.

[11] Amazon elastic compute cloud (ec2). Amazon, Inc. [08 Aug 2010].
[Online]. Available: http://www.amazon.com/ec2

[12] Windows azure platform. Microsoft, Inc. [08 Aug 2010]. [Online].
Available: http://www.microsoft.com/windowsazure/

[13] (2005) OpenVZ user’s guide. SWsoft. Herndon, VA. [Online]. Available:
http://download.openvz.org/doc/OpenVZ-Users-Guide.pdf

[14] B. Simmons and H. Lutfiyya, “Achieving high-level directives using
strategy-trees,” in MACE ’09: Proceedings of the 4th IEEE International
Workshop on Modelling Autonomic Communications Environments.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 44–57.

[15] G. Keller, “Dynamic resource management in virtualized environments,”
Master’s thesis, University of Western Ontario, 2009.

[16] A. Pokluda, “Dynamic resource management using operating system-
level virtualiation, bsc thesis,” University of Western Ontario, 2010.



[17] N. Dulay, E. Lupu, M. Sloman, and N. Damianou, “A policy deploy-
ment model for the ponder language,” in IM’09: Proceedings of the
11th IFIP/IEEE international conference on Symposium on Integrated
Network Management, 2001, pp. 529–543.

[18] Xen. XenSource, Inc. [20 May 2010]. [Online]. Available: www.
xensource.com

[19] Vmware esx server. VMWare, Inc. [20 May 2010]. [Online]. Available:
www.vmware.com/products/esx

[20] G. Keller and H. Lutfiyya, “Replication and migration as resource
management mechanisms for virtualized environments,” in ICAS ’10:
Proceedings of the 2010 Sixth International Conference on Autonomic
and Autonomous Systems. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 137–143.


